Bone Allografts (bone + allograft)

Distribution by Scientific Domains


Selected Abstracts


A New Technique for Reconstruction of the Atrophied Narrow Alveolar Crest in the Maxilla Using Morselized Impacted Bone Allograft and Later Placement of Dental Implants

CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 2 2008
Per Holmquist DDS
ABSTRACT Background: In cases when the alveolar crest is too narrow to host an implant, lateral augmentation is required. The use of autogenous bone blocks harvested from the iliac crest is often demanded. One disadvantage is the associated patient morbidity. Purpose: The purpose of this study was to clinically and histologically evaluate the use of morselized impacted bone allograft, a novel technique for reconstruction of the narrow alveolar crest. Materials and Methods: Two patients with completely edentulous maxillae and one partially edentulous, with a mean age of 77 years (range 76,79 years) were included in the study. The alveolar crest width was <3 mm without possibility to place any implant. Bone grafts were taken from a bone bank in Gävle Hospital. Bone from the neck of femur heads was milled to produce bone chips. The milled bone was partially defatted by rinsing in 37°C saline solution. After compression of the graft pieces with a size of 15 mm (height), 30 mm (length), and 6 mm (width), they were then fit to adapt to the buccal surface of the atrophied alveolar crest. One piece was placed to the right and one to the left side of the midline. On both sides fibrin glue was used (Tisseel®, Baxter AG, Vienna, Austria) to stabilize the graft. After 6 months of graft healing, dental implants were placed, simultaneously biopsies were harvested and in one patient two oxidized microimplants were placed. At the time of abutment connection, microimplants were retrieved with surrounding bone for histology. Fixed screw-retained bridges were fabricated in mean of 7 months after implant surgery. Radiographs were taken before and after implant surgery and after 1 year of loading. Results: Sixteen implants with an oxidized surface were placed (TiUnite®, Nobel Biocare AB, Göteborg, Sweden). After 1 year of functional loading, all implants were clinically stable. The marginal bone loss was 1.4 mm (SD 0.3) after 1 year of loading. The histological examination showed resorption and subsequent bone formation on the allograft particles. There were no signs of inflammatory cell infiltration in conjunction with the allograft. The two microimplants showed bone formation directly on the implant surface. Conclusions: This study shows that morselized impacted bone allograft can be used to increase the width of the atrophied narrow alveolar crest as a good alternative to autogenous bone grafts in elderly patients. The histological examination of biopsies revealed a normal incorporation process and no signs of an immunological reaction. Further studies with larger samples are of important to be able to conclude if equal results can be obtained using morselized impacted bone allograft as for autogenous bone graft. [source]


Polymer-assisted regeneration therapy with Atrisorb® barriers in human periodontal intrabony defects

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 1 2004
Lein-Tuan Hou
Abstract Aim: This study compared clinical results of 40 periodontal osseous defects treated by two types of absorbable barrier materials. Material and Methods: Thirty patients (23 males and seven females) suffering from moderate to advanced periodontitis (with comparable osseous defects) were randomly assigned to receive either Atrisorb® barrier (n=22; group A) or Resolut XT® barrier (n=18; group B) therapy. Periodontal phase I treatment and oral hygiene instruction were performed before periodontal surgery. Papillary preservation, partial thickness flap, citric acid root conditioning, and decortication procedures were applied during the operation. Bone defects were filled with demineralized freeze-dried bone allograft and minocycline mixture (4:1 ratio). Postoperative care included 0.10% chlorhexidine rinse daily and antibiotic medication for 2 weeks. Clinical assessments including probing depth (PD), clinical attachment level (CAL), gingival recession (GR), plaque index (PlI), gingival index (GI), and radiographic examinations were taken at the baseline, preoperatively and at 3 and 6 months after regenerative surgery. Results: Six months following therapy, both Atrisorb® and Resolut XT® groups had achieved comparable clinical improvement in pocket reduction (3.9 versus 4.4 mm), attachment tissue gain (clinical attachment gain; 3.5 versus 3.6 mm), and reduction in the GI and in the PlI. Within-group comparisons showed significant attachment gain and pocket reduction between baseline data and those at both 3 and 6 months postoperatively (p<0.01). There were no statistically significant differences in any measured data between groups A and B. Conclusions: The results of this study indicate that a comparable and favorable regeneration of periodontal defects can be achieved with both Atrisorb® and Resolut XT® barriers. Further long-term study and histologic observations of tissue healing are needed to evaluate whether Atrisorb® is promising for clinical use. [source]


A New Technique for Reconstruction of the Atrophied Narrow Alveolar Crest in the Maxilla Using Morselized Impacted Bone Allograft and Later Placement of Dental Implants

CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 2 2008
Per Holmquist DDS
ABSTRACT Background: In cases when the alveolar crest is too narrow to host an implant, lateral augmentation is required. The use of autogenous bone blocks harvested from the iliac crest is often demanded. One disadvantage is the associated patient morbidity. Purpose: The purpose of this study was to clinically and histologically evaluate the use of morselized impacted bone allograft, a novel technique for reconstruction of the narrow alveolar crest. Materials and Methods: Two patients with completely edentulous maxillae and one partially edentulous, with a mean age of 77 years (range 76,79 years) were included in the study. The alveolar crest width was <3 mm without possibility to place any implant. Bone grafts were taken from a bone bank in Gävle Hospital. Bone from the neck of femur heads was milled to produce bone chips. The milled bone was partially defatted by rinsing in 37°C saline solution. After compression of the graft pieces with a size of 15 mm (height), 30 mm (length), and 6 mm (width), they were then fit to adapt to the buccal surface of the atrophied alveolar crest. One piece was placed to the right and one to the left side of the midline. On both sides fibrin glue was used (Tisseel®, Baxter AG, Vienna, Austria) to stabilize the graft. After 6 months of graft healing, dental implants were placed, simultaneously biopsies were harvested and in one patient two oxidized microimplants were placed. At the time of abutment connection, microimplants were retrieved with surrounding bone for histology. Fixed screw-retained bridges were fabricated in mean of 7 months after implant surgery. Radiographs were taken before and after implant surgery and after 1 year of loading. Results: Sixteen implants with an oxidized surface were placed (TiUnite®, Nobel Biocare AB, Göteborg, Sweden). After 1 year of functional loading, all implants were clinically stable. The marginal bone loss was 1.4 mm (SD 0.3) after 1 year of loading. The histological examination showed resorption and subsequent bone formation on the allograft particles. There were no signs of inflammatory cell infiltration in conjunction with the allograft. The two microimplants showed bone formation directly on the implant surface. Conclusions: This study shows that morselized impacted bone allograft can be used to increase the width of the atrophied narrow alveolar crest as a good alternative to autogenous bone grafts in elderly patients. The histological examination of biopsies revealed a normal incorporation process and no signs of an immunological reaction. Further studies with larger samples are of important to be able to conclude if equal results can be obtained using morselized impacted bone allograft as for autogenous bone graft. [source]


In vivo study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2006
D. Dallari
Abstract The repair of confined trabecular bone defects in rabbits treated by autologous bone marrow stromal cells (BMSC), platelet-rich plasma (PRP), freeze-dried bone allografts (FDBA) alone and in combination (BMSC,+,PRP; FDBA,+,BMSC; FDBA,+,PRP; FDBA,+,PRP,+,BMSC) was compared. A critical size defect was created in the distal part of the femurs of 48 adult rabbits. Histology and histomorphometry were used in the evaluation of healing at 2, 4, and 12 weeks after surgery. The healing rate (%) was calculated by measuring the residual bone defect area. Architecture of the newly formed bone was compared with that of bone at the same distal femur area of healthy rabbits. The defect healing rate was higher in PRP,+,BMSC, FDBA,+,PRP, FDBA,+,BMSC, and FDBA,+,PRP,+,BMSC treatments, while lower values were achieved with PRP treatment at all experimental times. The highest bone-healing rate at 2 weeks was achieved with FDBA,+,PRP,+,BMSC treatment, which resulted significantly different from PRP (p,<,0.05) and BMSC (p,<,0.05) treatments. At 4 weeks, the bone-healing rate increased except for PRP treatment. Finally, the bone-healing rate of FDBA,+,PRP, FDBA,+,BMSC, and FDBA,+,PRP,+,BMSC was significantly higher than that of PRP at 12 weeks (p,<,0.05). At 12 weeks, significant differences still existed between PRP, BMSC, and FDBA groups and normal bone (p,<,0.05). These results showed that the combination of FDBA, BMSC and PRP permitted an acceleration in bone healing and bone remodeling processes. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source]


Biomechanical effects of medial,lateral tibial tunnel placement in posterior cruciate ligament reconstruction

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003
Keith L. Markolf
With most posterior cruciate (PCL) reconstruction techniques, the distal end of the graft is fixed within a tibial bone tunnel. Although a surgical goal is to locate this tunnel at the center of the PCL's tibial footprint, errors in medial,lateral tunnel placement of the tibial drill guide are possible because the position of the tip of the guide relative to the PCL's tibial footprint can be difficult to visualize from the standard arthroscopy portals. This study was designed to measure changes in knee laxity and graft forces resulting from mal-position of the tibial tunnel medial and lateral to the center of the PCL's tibial insertion. Bone,patellar tendon,bone allografts were inserted into three separate tibial tunnels drilled into each of 10 fresh-frozen knee specimens. Drilling the tibial tunnel 5 mm medial or lateral to the center of the PCL's tibial footprint had no significant effect on knee laxities: the graft pretension necessary to restore normal laxity at 90° of knee flexion (laxity match pretension) with the medial tunnel was 13.8 N (29%) greater than with the central tunnel. During passive knee flexion,extension, graft forces with the medial tibial tunnel were significantly higher than those with the central tunnel for flexion angles greater than 65° while graft forces with the central tibial tunnel were not significantly different than those with the lateral tibial tunnel. Graft forces with medial and lateral tunnels were not significantly different from those with a central tunnel for 100 N applied posterior tibial force, 5 N m applied varus and valgus moment, and 5 N m applied internal and external tibial torque. With the exception of slightly higher graft forces recorded with the medial tunnel beyond 65° of passive knee flexion, errors in medial,lateral placement of the tibial tunnel would not appear to have important effects on the biomechanical characteristics of the reconstructed knee. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]