Body Size Increases (body + size_increase)

Distribution by Scientific Domains


Selected Abstracts


Pattern and process in the distribution of North American freshwater fish

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010
DAVID GRIFFITHS
Published species lists were analysed to determine the contributions of dispersal, habitat preference, river channel size, body size, and glacial history to large-scale patterns in freshwater fish species richness in North America, north of central Mexico. Total species richness declines to the north and west but the pattern for endemics differs from that of widespread species. Mississippi Basin regions are more species rich than more isolated, coastal, regions. Richness declines more rapidly with increasing latitude in riverine specialist than in habitat generalist species. Levels of endemism are greatest in species found in small- to medium-sized river channels. The strong Rapoport effect, more marked in migratory than resident species, is correlated with habitat preference, channel size, and glacial history. Body size increases with latitude, largely as a result of a trend from small resident to large migrant species. In unglaciated regions, ancestral species survived in large habitats because these are longer-lived, more extensive, less isolated and more stable than headwaters, permitting larger populations and lower extinction levels. Reduced levels of gene flow in small, peripheral, channels isolated by larger downstream habitats have resulted in the production of many, small range, small-bodied species. The latitudinal richness gradient is a consequence of speciation and extinction events in unglaciated faunas and an increasing domination of faunas by generalist, large bodied, large channel, recolonizing species in more northern regions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 46,61. [source]


Seed weevils living on the edge: pressures and conflicts over body size in the endoparasitic Curculio larvae

ECOLOGICAL ENTOMOLOGY, Issue 3 2009
RAŚL BONAL
Abstract 1.,Body size in parasitic insects can be subjected to contrasting selective pressures, especially if they complete their development within a single host. On the one hand, a larger body size is associated with a higher fitness. On the other hand, the host offers a discrete amount of resources, thus constraining the evolution of a disproportionate body size. 2.,The present study used the weevil Curculio elephas as a study model. Larvae develop within a single acorn, feeding on its cotyledons, and larval body size is strongly related to individual fitness. 3.,The relationship between larval and acorn size was negatively exponential. Larval growth was constrained in small acorns, which did not provide enough food for the weevils to attain their potential size. Larval size increased and levelled off in acorns over a certain size (inflexion point), in which cotyledons were rarely depleted. When there were more than one larva per acorn, a larger acorn was necessary to avoid food depletion. 4.,The results show that C. elephas larvae are sometimes endoparasitic, living on the edge of host holding capacity. If they were smaller they could avoid food depletion more easily, but the fitness benefits linked to a larger size have probably promoted body size increase. The strong negative effects of conspecific competition may have possibly influenced female strategy of laying a single egg per seed. 5.,Being larger and fitter, but always within the limits of the available host sizes, may be one main evolutionary dilemma in endoparasites. [source]


Density-dependent growth of young-of-the-year Atlantic salmon (Salmo salar) revisited

ECOLOGY OF FRESHWATER FISH, Issue 1 2010
I. Imre
Imre I, Grant JWA, Cunjak RA. Density-dependent growth of young-of-the-year Atlantic salmon (Salmo salar) revisited. Ecology of Freshwater Fish 2010: 19: 1,6. © 2009 John Wiley & Sons A/S Abstract,,, The length of individual young-of-the-year (YOY) Atlantic salmon (Salmo salar) in Catamaran Brook decreases with increasing population density following a negative power curve. Because most of this decrease in growth rate occurs at low densities (<1 fish·m,2), (Imre et al. 2005; Journal of Animal Ecology, 74: 508,516) suggested that exploitation competition for drifting prey rather than space limitation might be responsible for this pattern. Recently, (Ward et al. 2007; Journal of Animal Ecology, 76: 135,138) showed that the negative power curve of growth rate versus density can be caused by other mechanisms and suggested that Imre et al.'s evidence for density-dependent growth would have been stronger if we had analysed final size versus initial density rather than final density. We examined (i) whether the negative power curve of size versus density was also apparent in an analysis of final size versus initial density and tested two predictions that emerge from Ward et al.'s model, (ii) the variance in body size increases with population density, and (iii) the maximum fish size at a site is density-independent. The final size of YOY salmon decreased with increasing initial density following a negative power curve. Our data did not provide strong support for the above predictions emerging from Ward et al.'s model. Our analyses of different years, sites and seasons were consistent with the hypothesis of density-dependent growth of YOY salmon. [source]


Horn size predicts physical performance in the beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae)

FUNCTIONAL ECOLOGY, Issue 4 2005
S. P. LAILVAUX
Summary 1In many animals, the size of secondary sexual ornaments is known to be related to the probability of victory in fights between males, and hence to fighting ability. However, few studies have attempted to link fighting ability to any physical performance measures. 2Here we show that horn size in the dung beetle Euoniticellus intermedius accurately predicts two types of whole-organism performance, independent of body size, that are likely to play an important role in male contests: the force required to pull a beetle out of a tunnel, and the distance the beetle was able to run before exhaustion (maximum exertion). 3Body length is also a statistically significant predictor of pulling force, but not of exertion, suggesting that horn size is a more reliable predictor of performance than body size alone, a result that is consistent with a previous finding that horn size becomes more important in determining victory in male,male contests as body size increases. 4This study is the first to establish direct links between whole-organism performance abilities, male armaments and fighting ability in the same species. Our findings suggest that physiological performance capacities are important factors underlying the evolution of signal expression in E. intermedius, and should be considered in future studies of the evolution of animal signalling. [source]


VERTEBRAL OSTEOLOGY AND COMPLEXITY IN LAGENORHYNCHUS ACUTUS (DELPHINIDAE) WITH COMPARISON TO OTHER DELPHINOID GENERA

MARINE MAMMAL SCIENCE, Issue 3 2005
Emily A. Buchholtz
Abstract The vertebral column of the Atlantic white-sided dolphin, Lagenorhynchus acutus, reflects the radical reorganization of the cetacean column for locomotion in water. Both posterior thoracic and anterior caudal vertebrae have been "lumbarized," and discontinuities occur within the caudal series at the synclinal point and fluke base. Morphology changes subtly as body size increases. Neural process height increases more rapidly, and centrum length more variably, than other vertebral parameters. As a result, large animals have disproportionately tall neural processes, short necks, long mid-body regions, and short flukes. Vertebral columns of large animals also show greater complexity (range, irregularity, and polarization) of centrum length than do those of smaller animals. Comparisons among dolphins reveal that complexity trends with respect to differentiation of parts run counter to the trend with respect to number of parts, a relationship predicted by Williston in 1914. [source]


Substrate determines asymmetrical gait dynamics in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis)

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009
Jesse W. Young
Abstract Studies of skeletal pathology indicate that injury from falling accounts for most long bone trauma in free-ranging primates, suggesting that primates should be under strong selection to manifest morphological and behavioral mechanisms that increase stability on arboreal substrates. Although previous studies have identified several kinematic and kinetic features of primate symmetrical gaits that serve to increase arboreal stability, very little work has focused on the dynamics of primate asymmetrical gaits. Nevertheless, asymmetrical gaits typify the rapid locomotion of most primates, particularly in smaller bodied taxa. This study investigated asymmetrical gait dynamics in growing marmosets and squirrel monkeys moving on terrestrial and simulated arboreal supports (i.e., an elevated pole). Results showed that monkeys used several kinematic and kinetic adjustments to increase stability on the pole, including reducing peak vertical forces, limiting center of mass movements, increasing substrate contact durations, and using shorter and more frequent strides (thus limiting disruptive whole-body aerial phases). Marmosets generally showed greater adjustment to pole locomotion than did squirrel monkeys, perhaps as a result of their reduced grasping abilities and retreat from the fine-branch niche. Ontogenetic increases in body size had relatively little independent influence on asymmetrical gait dynamics during pole locomotion, despite biomechanical theory suggesting that arboreal instability is exacerbated as body size increases relative to substrate diameter. Overall, this study shows that 1) symmetrical gaits are not the only stable way to travel arboreally and 2) small-bodied primates utilize specific kinematic and kinetic adjustments to increase stability when using asymmetrical gaits on arboreal substrates. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source]


Functional anatomy of the olecranon process in hominoids and plio-pleistocene hominins

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2004
Michelle S.M. Drapeau
Abstract This study examines the functional morphology of the olecranon process in hominoids and fossil hominins. The length of the bony lever of the triceps brachii muscle (TBM) is measured as the distance between the trochlear articular center and the most distant insertion site of the TBM, and olecranon orientation is measured as the angle that this bony lever makes with the long axis of the ulna. Results show that Homo, Pan, Gorilla, most monkeys, and the Australopithecus fossils studied have similar relative olecranon lengths. Suspensory hominoids and Ateles have shorter olecranons, suggesting, in some instances, selection for greater speed in extension. The orientation that the lever arm of the TBM makes with the long axis of the ulna varies with preferred locomotor mode. Terrestrial primates have olecranons that are more posteriorly oriented as body size increases, fitting general models of terrestrial mammalian posture. Arboreal quadrupeds have more proximally oriented lever arms than any terrestrial quadrupeds, which suggests use of the TBM with the elbow in a more flexed position. Olecranon orientation is not consistent in suspensory hominoids, although they are all characterized by orientations that are either similar or more posterior than those observed in quadrupeds. Homo and the fossils have olecranons that are clearly more proximally oriented than expected for a quadruped of their size. This suggests that Homo and Australopithecus used their TBM in a flexed position, a position most consistent with manipulatory activities. Am J Phys Anthropol, 2003. © 2003 Wiley-Liss, Inc. [source]