Bovine Teeth (bovine + tooth)

Distribution by Scientific Domains


Selected Abstracts


Influence of dentin on pH of 2% chlorhexidine gel and calcium hydroxide alone or in combination

DENTAL TRAUMATOLOGY, Issue 3 2010
Laila Gonzales Freire
Most of the times, these objectives are not achieved solely by chemomechanical preparation, and intracanal dressing may be necessary. In these cases, calcium hydroxide is used as a root canal dressing due to its well-known and recognized antimicrobial activity. Chlorhexidine has a wide spectrum of antimicrobial activity and its association with calcium hydroxide has been recommended in an attempt to amplify antimicrobial effects of calcium hydroxide. It is also known that dentin exerts a buffering effect under wide pH variations, and may be responsible for decreasing the antimicrobial activity of drugs inside the root canal. The objectives of this study were to assess the pH of 2% chlorhexidine gel and calcium hydroxide alone or in combination, as well as the influence of dentin on the pH of these compounds. Dentin powder was obtained from bovine teeth and added as 1.8% to the volume of the medications. All substances were individually stored in plastic flasks, in triplicate. A pH meter was used at five different moments to assess pH in viscous medium: immediately after preparation and after 24 h, and 7, 14, and 21 days. Results were analyzed by paired Student's t -test. Statistically significant differences were observed in the 2% chlorhexidine gel group alone or associated with calcium hydroxide and added of dentin powder (P < 0.05). Mean pH values indicated the influence of dentin powder because of a significant increase in pH. Calcium hydroxide with propylene glycol as the vehicle always showed high pH, demonstrating that this compound was not affected by the presence of dentin. [source]


Fracture strength of bovine incisors after intra-radicular treatment with MTA in an experimental immature tooth model

INTERNATIONAL ENDODONTIC JOURNAL, Issue 9 2007
E. A. Bortoluzzi
Abstract Aim, To evaluate, using an experimental immature tooth model, the fracture resistance of bovine incisors submitted to different reinforcement treatments with mineral trioxide aggregate (MTA). Methodology, An immature tooth model was created by sectioning the coronal and apical portions of 40 bovine incisors 8 mm above and 12 mm below the cementoenamel junction. The root canals were irrigated with 1.0% sodium hypochlorite. They were enlarged both coronally and apically using number 703 carbide burs (ISO: 500,104-168-007-021) and their internal diameter was standardized to 2.1 mm. The specimens were assigned to four groups (n = 10): GI-control (without filling); GII-apical MTA plug + filling with gutta-percha and endodontic sealer; GIII-filling with MTA; GIV-apical MTA plug + filling with MTA + metallic post (Reforpost I). A polyether impression material was used to simulate the periodontal ligament. The specimens were submitted to a compressive load at a crosshead speed of 0.5 mm min,1 in a servo-hydraulic universal testing machine (MTS 810) applied at 45° to the long axis of the tooth until failure. Data were submitted to statistical analysis by the Kruskal,Wallis test at 5% significance level. Results, GIV presented the highest fracture resistance (32.7N) and differed significantly from the other groups (P < 0.05). No statistically difference was found between GII (16.6N) and GIII (23.4N) (P > 0.05). GIII had a significantly higher fracture resistance than GI (P < 0.05). Conclusions, The use of MTA + metallic post as an intra-radicular reinforcement treatment increased the resistance to fracture of weakened bovine teeth in an experimental immature tooth model. [source]


Polymerization Contraction Stress of Resin Composite Restorations in a Model Class I Cavity Configuration Using Photoelastic Analysis

JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 6 2000
YOSHIFUMI KINOMOTO DDS
ABSTRACT Purpose: An important factor that contributes to deterioration of resin composite restorations is contraction stress that occurs during polymerization. The purpose of this article is to familiarize the clinician with the characteristics of contraction stress by visualizing the stresses associated with this invisible and complex phenomenon. Materials and Methods: Internal residual stresses generated during polymerization of resin composite restorations were determined using micro-photoelastic analysis. Butt-joint preparations simulating Class I restorations (2.0 mm ± 5.0 mm, 2.0 mm in depth) were prepared in three types of substrates (bovine teeth, posterior composite resin, and transparent composite resin) and were used to examine contraction stress in and around the preparations. Three types of composite materials (a posterior composite, a self-cured transparent composite, and a light-cured transparent composite) were used as the restorative materials. The self-cured composite is an experimental material, and the others are commercial products. After treatment of the preparation walls with a bonding system, the preparations were bulk-filled with composite. Specimens for photo-elastic analysis, were prepared by cutting sections perpendicular to the long axis of the preparation. Fringe patterns for directions and magnitudes of stresses were obtained using transmitted and reflected polarized light with polarizing microscopes. Then, the photoelastic analysis was performed to examine stresses in and around the preparations. Results: When cavity preparations in bovine teeth were filled with light-cured composite, a gap was formed between the dentinal wall and the composite restorative material, resulting in very low stress within the restoration. When cavity preparations in the posterior composite models were filled with either self-cured or light-cured composite, the stress distribution in the two composites was similar, but the magnitude of the stress was greater in the light-cured material. When preparations in the transparent composite models were filled with posterior composite and light-cured transparent composite material, significant stress was generated in the preparation models simulating tooth structure, owing to the contraction of both restorative materials. CLINICAL SIGNIFICANCE Polymerization contraction stress is an undesirable and inevitable characteristic of adhesive restorations encountered in clinical dentistry that may compromise restoration success. Clinicians must understand the concept of polymerization contraction stress and realize that the quality of composite resin restorations depends on successful management of these stresses. [source]


Bonding abutments to cast metal post/cores: comparison of pre-treatment effects

JOURNAL OF ORAL REHABILITATION, Issue 2 2003
H. Kajihara
summary, Bond strengths were evaluated for (1) metal primer systems when the metal was contaminated by a dentin conditioner and (2) a dentin adhesive system when dentin was contaminated by metal primers. Disc specimens were cast in a silver,palladium,copper,gold (Ag,Pd,Cu,Au) alloy and dentin specimens were prepared by grinding the labial surface of bovine teeth. Specimens were treated with (1) metal primer alone, (2) dentin conditioner alone, (3) metal primer followed by dentin conditioner and (4) dentin conditioner followed by metal primer. A resin cement was poured into a mould over a restricted bonding area and allowed to set. Metal specimens were shear stressed to failure after thermocycling (4,60 °C; 20 000 cycles). Dentin specimens were stressed in the same manner after 24 h of immersion in 37 °C water. The results were compiled and analysed by anova. Data for dentin specimens treated with dentin conditioner only or with the combination of dentin conditioner and metal primer were not significantly different, statistically. Post-thermocycled groups indicated that bond strengths to the alloy significantly decreased (P < 0·05) when the primed metal surface was contaminated with dentin conditioner regardless of the timing of its application. [source]


Use of optical coherence tomography for assessment of dental caries: quantitative procedure

JOURNAL OF ORAL REHABILITATION, Issue 12 2001
B. T. Amaechi
A method for quantitative assessment of dental caries using optical coherence tomography (OCT) was demonstrated. Development of caries lesions in 15 bovine teeth, by demineralization in acidic buffer solution, was quantitatively assessed daily for 3 days, using OCT. An OCT system which can collect A-scans (depth versus reflectivity curve), B-scans (longitudinal images) and C-scans (transverse images at constant depth) was used. While the B- and C-scans qualitatively described the lesion detected, the A-scan which showed the depth (mm) resolved reflectivity (dB) of the tooth tissue was used for the quantitative analysis. After a simple normalization procedure to determine the actual depth the light travelled into the tooth tissue, the area (R) under the A-scan was quantified as a measure of the degree of reflectivity of the tissue. The result showed that R (dB mm) decreased with increasing demineralization time. The percentage reflectivity loss (R%) in demineralized tissue, which related to the amount of mineral loss, was also calculated, and it was observed that R% increased with increasing demineralization time. It was concluded that with the above procedure, OCT could quantitatively monitor the mineral changes in a caries lesion on a longitudinal basis. [source]