Boreal Lakes (boreal + lake)

Distribution by Scientific Domains


Selected Abstracts


Effects of temperature and sediment properties on benthic CO2 production in an oligotrophic boreal lake

FRESHWATER BIOLOGY, Issue 8 2010
IRINA BERGSTRÖM
Summary 1. Temperature and many other physical and chemical factors affecting CO2 production in lake sediments vary significantly both seasonally and spatially. The effects of temperature and sediment properties on benthic CO2 production were studied in in situ and in vitro experiments in the boreal oligotrophic Lake Pääjärvi, southern Finland. 2. In in situ experiments, temperature of the water overlying the shallow littoral sediment varied seasonally between 0.5 and 15.7 °C, but in deep water (,20 m) the range was only 1.1,6.6 °C. The same exponential model (r2 = 0.70) described the temperature dependence at 1.2, 10 and 20 m depths. At 2.5 and 5 m depths, however, the slopes of the two regression models (r2 = 0.94) were identical but the intercept values were different. Sediment properties (wet, dry, mineral and organic mass) varied seasonally and with depth, but they did not explain a significantly larger proportion of variation in the CO2 output rate than temperature. 3. In in vitro experiments, there was a clear and uniform exponential dependence of CO2 production on temperature, with a 2.7-fold increase per 10 °C temperature rise. The temperature response (slope of regression) was always the same, but the basic value of CO2 production (intercept) varied, indicating that other factors also contributed to the benthic CO2 output rate. 4. The annual CO2 production of the sediment in Lake Pääjärvi averaged 62 g CO2 m,2, the shallow littoral at 0,3 m depth releasing 114 g CO2 m,2 and deep profundal (>15 m) 30 g CO2 m,2. On the whole lake basis, the shallow littoral at 0,3 m depth accounted for 53% and the sediment area in contact with the summer epilimnion (down to a depth c. 10 m) 75% of the estimated total annual CO2 output of the lake sediment, respectively. Of the annual production, 83% was released during the spring and summer. 5. Using the temperature-CO2 production equations and climate change scenarios we estimated that climatic warming might increase littoral benthic CO2 production in summer by nearly 30% from the period 1961,90 to the period 2071,2100. [source]


Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lake

FRESHWATER BIOLOGY, Issue 8 2003
T. Larmola
Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source]


Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2005
Kaisa Haukka
Summary The bacterioplankton community composition in two Finnish forest lakes with different content of humic substances was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of the major bands. The same dominant bacterial phylotypes were detected in the bacterioplankton communities of clear-water Lake Ahvenlammi and humic Lake Sammalisto. For 4 years, in every water layer, Actinobacteria was the dominant and Verrucomicrobia the second most common phylum. In the hypolimnion, other dominant phyla were also found. We set up a mesocosm experiment to assess the effect of a sudden load of allochthonous humus extract to the bacterioplankton community composition. Changes in the bacterial communities were followed in four control and four humus extract-added mesocosms for 50 days. In the humic mesocosms the phylotypes of allochthonous Proteobacteria arriving with the humus extract were initially prevalent but disappeared during the first weeks. After this the Actinobacteria -dominated communities resembled the bacterioplankton communities of the control mesocosms and Lake Ahvenlammi. Towards the end of the experiment the community patterns in all the mesocosms started to change slightly because of erratic occurrence of new proteobacterial phylotypes. Thus the effects of a sudden load of allochthonous humic material and bacteria to the bacterioplankton community composition were transient. [source]


Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes

GLOBAL CHANGE BIOLOGY, Issue 1 2005
Paula Kankaala
Abstract Methane efflux was studied in stands of three emergent macrophyte species (Equisetum fluviatile, Schoenoplectus lacustris and Phragmites australis) commonly found in the littoral zone of boreal lakes. In vegetation stands with relatively low methane (CH4) emissions (<0.3 mol m,2 (ice-free period),1), the seasonal variation of CH4 efflux was better correlated with the dynamics of plant growth than variation in sediment temperature. In dense and productive vegetation stands that released high amounts of CH4 (2.3,7.7 mol m,2 (ice-free period),1), the seasonal variation in CH4 efflux was correlated with sediment temperature, indicating that methanogens were more limited by temperature than substrate supply. The bottom type at the growth site of the emergent plants significantly influenced the ratio of CH4 efflux to aboveground biomass of plants (Eff : B). The lowest Eff : B ratio was found in E. fluviatile stands growing on sand bottom under experimental conditions and the highest in P. australis -dominated littoral areas accumulating detritus from external sources. The future changes expected in the hydrology of boreal lakes and rivers because of climatic warming may impact the growth conditions of aquatic macrophytes as well as decomposition and accumulation of detritus and, thus, CH4 effluxes from boreal lakes. [source]


Natural disturbance and life history: consequences of winterkill on fathead minnow in boreal lakes

JOURNAL OF FISH BIOLOGY, Issue 3 2006
A. J. Danylchuk
Age, growth and reproductive characteristics of fathead minnow Pimephales promelas populations inhabiting four lakes that varied in the extent and frequency of winterkill were studied in the boreal region of western Canada. The lifespan of fathead minnows inhabiting lakes prone to winterkill was 1,2 years shorter than those in less disturbed lakes. In populations prone to winterkill, fish displayed faster growth rates and grew to a larger size-at-age, particularly during the first year of life. Although lower population densities in winterkill lakes probably contributed to this increased growth, adults in these populations tended to spawn earlier in the season than the smaller adults in more stable populations. Fathead minnows in lakes prone to winterkill also matured at an earlier age and allocated a greater proportion of their body mass to gonads than conspecifics in the more benign, stable lakes. These trends are consistent with predictions for organisms in variable, unpredictable environments and, because fathead minnows are tolerant to a wide range of environmental conditions, suggest that variation in life-history traits among populations is probably a product of both selection and phenotypic plasticity. [source]