| |||
Blue Coloration (blue + coloration)
Selected AbstractsFemale and male plumage brightness correlate with nesting failure in azure-winged magpies Cyanopica cyanusJOURNAL OF AVIAN BIOLOGY, Issue 2 2008Jesús M. Avilés Animals may assess the quality of other individuals by using information that is contained in elaborate traits. We investigated the degree of sexual dimorphism in structural blue plumage coloration and the potential signal value of these traits in the azure-winged magpie Cyanopica cyanus. We predicted that in this species blue coloration should signal individual quality in both sexes since both females and males invest significantly in caring for offspring. Males have more saturated UV/blue coloration than females and blueness decreased from moulting to reproduction. Males and females did not mate assortatively for blue coloration although they did in relation to body size and condition. Blue colour did not correlate with adult body size or condition. However, nest predation decreased with female and male brightness. Our results suggest that blue coloration may potentially be used to assess parental qualities by potential mates in both sexes of the azure-winged magpie. [source] The evolution of black plumage from blue in Australian fairy-wrens (Maluridae): genetic and structural evidenceJOURNAL OF AVIAN BIOLOGY, Issue 5 2010Amy C. Driskell Genetic variation in the melanocortin-1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy-wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra- and inter-specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy-wrens. Our primary focus was subspecies of the white-winged fairy-wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy-wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy-wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy-wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white-winged fairy-wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade. [source] Female and male plumage brightness correlate with nesting failure in azure-winged magpies Cyanopica cyanusJOURNAL OF AVIAN BIOLOGY, Issue 2 2008Jesús M. Avilés Animals may assess the quality of other individuals by using information that is contained in elaborate traits. We investigated the degree of sexual dimorphism in structural blue plumage coloration and the potential signal value of these traits in the azure-winged magpie Cyanopica cyanus. We predicted that in this species blue coloration should signal individual quality in both sexes since both females and males invest significantly in caring for offspring. Males have more saturated UV/blue coloration than females and blueness decreased from moulting to reproduction. Males and females did not mate assortatively for blue coloration although they did in relation to body size and condition. Blue colour did not correlate with adult body size or condition. However, nest predation decreased with female and male brightness. Our results suggest that blue coloration may potentially be used to assess parental qualities by potential mates in both sexes of the azure-winged magpie. [source] Highly stable electrochromic polyamides based on N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamineJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2009Sheng-Huei Hsiao Abstract A new triphenylamine-containing aromatic diamine monomer, N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di- tert -butyl-substituted N,N,N,,N,-tetraphenyl-1,4-phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N -methyl-2-pyrrolidinone (NMP) and N,N -dimethylacetamide, and could be solution-cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass-transition temperatures of 269,296 °C, 10% weight-loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316,342 nm and photoluminescence maxima around 362,465 nm in the violet-blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole-transporting and electrochromic properties were examined by electrochemical and spectro-electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide-coated glass substrate exhibited two reversible oxidation redox couples at 0.57,0.60 V and 0.95,0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (,T%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330,2343, 2009 [source] Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC), in vivo staining, and uv,visible spectroscopic titrationPHYSIOLOGIA PLANTARUM, Issue 1 2006Jürgen Polster Previous studies in our laboratory have indicated that the nuclei of a number of trees are associated with flavonoids, especially flavan-3-ols. In the present study, three techniques were applied to verify that flavonoids are naturally incorporated into nuclei. These were histochemistry, UV,visible (UV-VIS) titration and laser microdissection. Nuclei from intact seed wings of Tsuga canadensis were isolated from their cells using laser microdissection and pressure catapulting (LMPC). Thereafter, the excised nuclei were stained with p -dimethylamino-cinnamaldehyde (DMACA), which resulted in a blue coloration due to the presence of flavanols. Thus, there is no doubt that the nuclei were, prior to staining, associated with flavanols. The nuclei of the coniferous species Abies lasiocarpa, Cedrus deodara, Cedrus libani, Juniperus communis, Picea abies, Picea orientalis and Pseudotsuga menziessii(Douglas fir) showed a yellow fluorescence typical for flavonols from the beginning of bud break over the entire growing season. However, after the bud-breaking period, the nuclei of all species, except for Cedrus deodara, showed additionally a blue reaction for flavanols. Rather late, in midsummer, blue-stained flavanols in nuclei were found in Picea orientalis. Generally, zeatin intensified the flavanol association with the nuclei. The main components of nucleosomes are DNA and the histone proteins. The nature of their association with the flavonols quercetin and rutin was investigated by UV-VIS spectroscopic titration. The data were evaluated by means of the Mauser (A and AD) diagrams. The results indicate that DNA shows largely no spectroscopically detectable association equilibria under the experimental conditions chosen. However, association (aggregation) equilibria can be observed with rutin or quercetin and histone sulphate in Tris buffer (pH 8.0, 7.4 and 7.0). In phosphate buffer, rutin shows spectroscopically no or only weak association with histone sulphate, in contrast to its behaviour towards quercetin. [source] |