| |||
Blood Volume Expansion (blood + volume_expansion)
Selected AbstractsForearm vascular and neuroendocrine responses to graded water immersion in humansACTA PHYSIOLOGICA, Issue 2 2000Gabrielsen The hypothesis that graded expansion of central blood volume by water immersion to the xiphoid process and neck would elicit a graded decrease in forearm vascular resistance was tested. Central venous pressure increased (P < 0.05) by 4.2 ± 0.4 mmHg (mean ± SEM) during xiphoid immersion and by 10.4 ± 0.5 mmHg during neck immersion. Plasma noradrenaline was gradually suppressed (P < 0.05) by 62 ± 8 and 104 ± 11 pg mL,1 during xiphoid and neck immersion, respectively, indicating a graded suppression of sympathetic nervous activity. Plasma concentrations of arginine vasopressin were suppressed by 1.5 ± 0.5 pg mL,1 (P < 0.05) during xiphoid immersion and by 2.0 ± 0.5 pg mL,1 during neck immersion (P < 0.05 vs. xiphoid immersion). Forearm subcutaneous vascular resistance decreased to the same extent by 26 ± 9 and 28 ± 4% (P < 0.05), respectively, during both immersion procedures, whereas forearm skeletal muscle vascular resistance declined only during neck immersion by 27 ± 6% (P < 0.05). In conclusion, graded central blood volume expansion initiated a graded decrease in sympathetic nervous activity and AVP-release. Changes in forearm subcutaneous vascular resistance, however, were not related to the gradual withdrawal of the sympathetic and neuroendocrine vasoconstrictor activity. Forearm skeletal muscle vasodilatation exhibited a more graded response with a detectable decrease only during immersion to the neck. Therefore, the forearm subcutaneous vasodilator response reaches saturation at a lower degree of central volume expansion than that of forearm skeletal muscle. [source] Obesity,hypertension: an ongoing pandemicINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 2 2007E. A. Francischetti Summary Considerable evidence has suggested that excessive weight gain is the most common cause of arterial hypertension. This association has been observed in several populations, in different regions of the world. Obesity,hypertension, a term that underscores the link between these two deleterious conditions, is an important public health challenge, because of its high frequency and concomitant risk of cardiovascular and kidney diseases. The obesity,hypertension pandemic imposes a considerable economic burden on societies, directly reflecting on healthcare system costs. Increased renal sodium reabsorption and blood volume expansion are central features in the development of obesity,hypertension. Overweight is also associated with increased sympathetic activity. Leptin, a protein expressed in and secreted by adipocytes, is the main factor linking obesity, increased sympathetic nervous system activity and hypertension. The renin,angiotensin,aldosterone system has also been causally implicated in obesity,hypertension, because angiotensinogen is expressed in and secreted by adipose tissue. Hypoadiponectinemia, high circulating levels of free fatty acids and increased vascular production of endothelin-1 (ET-1) have been reported as potential mechanisms for obesity,hypertension. Lifestyle changes are effective in obesity,hypertension control, though pharmacological treatment is frequently necessary. Despite the consistency of the mechanistic approach in explaining the causal relation between hypertension and obesity, there is yet no evidence that one class of drug is superior to the others in controlling obesity,hypertension. In this review, we present the current knowledge and research in obesity,hypertension, exploring the epidemiologic evidence of the association, its probable pathophysiological mechanisms and treatment issues. [source] Lateral parabrachial afferent areas and serotonin mechanisms activated by volume expansionJOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2008Lisandra Oliveira Margatho Abstract Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphé system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphé nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphé nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphé nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release. © 2008 Wiley-Liss, Inc. [source] An antidiabetic thiazolidinedione induces eccentric cardiac hypertrophy by cardiac volume overload in ratsCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2004Kenji Arakawa Summary 1.,To assess the involvement of volume overload in the development of cardiac hypertrophy during treatment with an antidiabetic thiazolidinedione, changes in cardiac anatomy and parameters of cardiac volume overload were evaluated in female Sprague-Dawley rats treated with the thiazolidinedione derivative T-174. 2.,Two week administration of T-174 (13 and 114 mg/kg per day) increased absolute and relative heart weights by 11,24%, demonstrating the development of cardiac hypertrophy. There was no evidence of oedema in hearts from treated rats. 3.,Both plasma and blood volumes were increased in T-174-treated rats without any changes in systolic blood pressure and heart rate, whereas haematocrit was decreased. In accordance with the existence of volume overload, both left ventricular end-diastolic pressure and right atrial pressure were increased. Morphometric analysis of hearts revealed that T-174 induced eccentric heart hypertrophy, as characterized by a small increase in wall thickness and a large increase in the chamber volume, which is characteristic of volume overload. Volume overload is suggested as the possible trigger mechanism because blood volume expansion preceded cardiac hypertrophy and there was a high correlation between heart weight and blood volume. 4.,T-174-treated streptozotocin-induced diabetic rats also exhibited blood volume expansion and cardiac hypertrophy. 5.,These findings suggest that cardiac volume overload is induced by plasma volume expansion and contributes to the development of eccentric cardiac hypertrophy during treatment with antidiabetic thiazolidinediones. Although thiazolidinediones are insulin-sensitizing agents, these cardiac effects are likely to be mediated independently of insulin. [source] |