Blood Vessel Walls (blood + vessel_wall)

Distribution by Scientific Domains


Selected Abstracts


Neuronal and vascular localization of histamine N-methyltransferase in the bovine central nervous system

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2000
Masahiro Nishibori
Abstract Histamine N-methyltransferase (HMT) (EC 2.1.1.8) plays a crucial role in the inactivation of the neurotransmitter histamine in the CNS. However, the localization of HMT remains to be determined. In the present study, we investigated immunohistochemical localization of HMT in the bovine CNS using a polyclonal antibody against bovine HMT. The HMT-like immunoreactivity was observed mainly in neurons. Strongly immunoreactive neurons were present in the oculomotor nucleus and ruber nucleus in the midbrain, the facial nucleus in the pons, the dorsal vagal nucleus and hypoglossal nucleus in the medulla oblongata and in the anterior horn as well as intermediolateral zone of the spinal cord. Intermediately immunoreactive neurons were present in the piriform cortex and the inferior olivary nucleus. The grey matter of the forebrain regions was diffusely and faintly stained. In the cerebellum and the striatum, the nerve fibres in the white matter were positive. The tuberomammillary nucleus, where histaminergic neurons are present, were weakly positive. The other immunoreactive structures in the CNS were blood vessels. Almost all of the blood vessel walls, irrespective of whether they were arterial or venous, were variably stained. The glial fibrillary acidic protein- (GFAP-) immunoreactive astrocytes were not stained. These findings indicated that histamine released from histaminergic nerve terminals or varicose fibres is methylated mainly in postsynaptic or extrasynaptic neurons rather than in astrocytes. The localization of HMT in the blood vessel wall may mean that blood-borne histamine and histamine released from mast cells associated with the blood vessels are catabolized in this structure. [source]


The role of inflammatory and parenchymal cells in acute pancreatitis,

THE JOURNAL OF PATHOLOGY, Issue 3 2007
A Vonlaufen
Abstract The infiltration of inflammatory cells into the pancreas is an early and central event in acute pancreatitis that promotes local injury and systemic complications of the disease. Recent research has yielded the important finding that resident cells of the pancreas (particularly acinar and pancreatic stellate cells) play a dynamic role in leukocyte attraction via secretion of chemokines and cytokines and expression of adhesion molecules. Significant progress has been made in recent years in our understanding of the role of leukocyte movement (adhesion to the blood vessel wall, transmigration through the blood vessel wall and infiltration into the parenchyma) in the pathophysiology of acute pancreatitis. This review discusses recent studies and describes the current state of knowledge in the field. It is clear that detailed elucidation of the numerous processes in the inflammatory cascade is an essential step towards the development of improved therapeutic strategies in acute pancreatitis. Studies to date suggest that combination therapy targeting different steps of the inflammatory cascade may be the treatment of choice for this disease. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Neuronal and vascular localization of histamine N-methyltransferase in the bovine central nervous system

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2000
Masahiro Nishibori
Abstract Histamine N-methyltransferase (HMT) (EC 2.1.1.8) plays a crucial role in the inactivation of the neurotransmitter histamine in the CNS. However, the localization of HMT remains to be determined. In the present study, we investigated immunohistochemical localization of HMT in the bovine CNS using a polyclonal antibody against bovine HMT. The HMT-like immunoreactivity was observed mainly in neurons. Strongly immunoreactive neurons were present in the oculomotor nucleus and ruber nucleus in the midbrain, the facial nucleus in the pons, the dorsal vagal nucleus and hypoglossal nucleus in the medulla oblongata and in the anterior horn as well as intermediolateral zone of the spinal cord. Intermediately immunoreactive neurons were present in the piriform cortex and the inferior olivary nucleus. The grey matter of the forebrain regions was diffusely and faintly stained. In the cerebellum and the striatum, the nerve fibres in the white matter were positive. The tuberomammillary nucleus, where histaminergic neurons are present, were weakly positive. The other immunoreactive structures in the CNS were blood vessels. Almost all of the blood vessel walls, irrespective of whether they were arterial or venous, were variably stained. The glial fibrillary acidic protein- (GFAP-) immunoreactive astrocytes were not stained. These findings indicated that histamine released from histaminergic nerve terminals or varicose fibres is methylated mainly in postsynaptic or extrasynaptic neurons rather than in astrocytes. The localization of HMT in the blood vessel wall may mean that blood-borne histamine and histamine released from mast cells associated with the blood vessels are catabolized in this structure. [source]


Transient Osmotic Absorption of Fluid in Microvessels Exposed to Low Concentrations of Dimethyl Sulfoxide

MICROCIRCULATION, Issue 1 2006
CATHERINE A. GLASS
ABSTRACT Dimethyl Sulfoxide (DMSO) is a common solvent for pharmacological agents. It is a small, lipophilic molecule thought to be relatively highly permeable through the cell membrane. While measuring the effect of low concentrations of DMSO (0.05,0.5% v/v) on capillary hydraulic conductivity as a vehicle control for pharmacological agents, the authors noticed what appeared to be an unusual transient absorption of fluid across the vessel wall. This absorption occurred during occlusion of the vessel, but dissipated quickly (1.7,8.6 s). The transient reabsorption reappeared upon each successive occlusion. To determine the nature of this transient absorption, the authors have measured the effect of increasing the pressure of the perfusing solution, of the concentration and time of perfusion of DMSO, and of superfusing the DMSO. They found that the absorption rate, but not the filtration rate, was concentration dependent, and was significantly correlated with the osmotic pressure of the DMSO. Moreover, the time taken for completion of the transient, i.e., time to reversal of flow, was inversely proportional to the hydraulic conductivity of the vessel. Furthermore, the transient absorption could be reduced and eventually abolished by increasing the hydrostatic pressure. These results strongly suggested that perfusion with low concentrations of DMSO could set up a significant osmotic pressure gradient across the vessel wall. This proposed mechanism for the absorption was confirmed by the measurement of a significant osmotic reflection coefficient of the vessel wall to DMSO (0.11 ± 0.01). Relatively low concentrations (0.05,0.5%) of DMSO were therefore able to stimulate a significant osmotic transient across the blood vessel walls. [source]


Vascular biology and vasculitis

APMIS, Issue 2009
CAROLINE O. S. SAVAGE
The inflammation of blood vessel walls that is associated with autoimmune disorders characterized by anti-neutrophil cytoplasm antibodies (ANCA) represents dysregulation of normal physiological processes, whereby neutrophils recruited to the vessel wall by cytokine-activated endothelium show destructive behaviours that initiate damage with endothelial apoptosis and denudation. Anti-endothelial cell antibodies may also help to focus and escalate injury. Understanding the molecular mechanisms underlying the interplay between ANCA, aberrant neutrophil behaviour and vascular damage will allow development of more focused therapies. [source]