Blank Correction (blank + correction)

Distribution by Scientific Domains


Selected Abstracts


Determination of Lithium Contents in Silicates by Isotope Dilution ICP-MS and its Evaluation by Isotope Dilution Thermal Ionisation Mass Spectrometry

GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 3 2004
Takuya Moriguti
Lithium; ICP-MS avec dilution isotopique; TIMS; matériaux silicatés de référence; météorites A precise and simple method for the determination of lithium concentrations in small amounts of silicate sample was developed by applying isotope dilution-inductively coupled plasma-mass spectrometry (ID-ICP-MS). Samples plus a Li spike were digested with HF-HClO4, dried and diluted with HNO3, and measured by ICP-MS. No matrix effects were observed for 7Li/6Li in rock solutions with a dilution factor (DF) of 97 at an ICP power of 1.7 kW. By this method, the determination of 0.5 ,g g -1 Li in a silicate sample of 1 mg can be made with a blank correction of < 1%. Lithium contents of ultrabasic to acidic silicate reference materials (JP-1, JB-2, JB-3, JA-1, JA-2, JA-3, JR-1 and JR-2 from the Geological Survey of Japan, and PCC-1 from the US Geological Survey) and chondrites (three different Allende and one Murchison sample) of 8 to 81 mg were determined. The relative standard deviation (RSD) was typically < 1.7%. Lithium contents of these samples were further determined by isotope dilution-thermal ionisation mass spectrometry (ID-TIMS). The relative differences between ID-ICP-MS and ID-TIMS were typically < 2%, indicating the high accuracy of ID-ICP-MS developed in this study. Nous avons développé une méthode simple et précise de détermination des concentrations en lithium dans de très petits échantillons silicatés. Elle est basée sur la méthode de dilution isotopique couplée à l'analyse par spectrométrie de masse avec couplage induit (ID-ICP-MS). Les échantillons auxquels est ajouté le spike de Li, sont mis en solution avec un mélange HF-HclO4, évaporés à sec, puis repris avec HNO3 et analysés à l'ICP-MS. Aucun effet de matrice n'est observé sur les rapports 7Li/6Li dans les solutions quand les facteurs de dilution sont 97 et qu'elles sont analysées avec une puissance du plasma de 1.7 kW. Par cette méthode, la détermination de 0.5 ,g g -1 de Li dans un échantillon silicaté de 1 mg peut être effectuée avec une correction de blanc < 1 %. Les teneurs en lithium des matériaux de référence de composition ultrabasique à acide (JP-1, JB-2, JB-3, JA-1, JA-2, JA-3, JR- 1 et JR-2 du Service Géologique du Japon, et PCC-1 du Service Géologique des USA) et de chondrites (trois échantillons différents d'Allende et un de Murchison), de poids variant entre 8 et 81 mg ont été déterminées. La déviation standard relative typique était < 1.7%. Les teneurs en lithium de ces échantillons ont été ensuite mesurées par dilution isotopique et spectrométrie de masse à thermo-ionisation (ID-TIMS). Les différences entre les résultats obtenus par ID-ICP-MS et ID-TIMS étaient < 2%, démontrant ainsi la grande justesse de la technique ID-ICP-MS développée dans cette étude. [source]


Accounting for co-extractable compounds (blank correction) in spectrophotometric measurement of extractable and total-bound proanthocyanidin in Leucaena spp

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 8 2002
Scott A Dalzell
Abstract Methods to account for the spectral interference of co-extractable compounds (blank correction) in the spectrophotometric analysis of both extractable and bound proanthocyanidin (PA) using the proanthocyanidin (butanol/HCl) assay were evaluated. Crude extractable and bound PA sample matrices of PA-free Leucaena magnifica were used. Extractable PA blanks generated in heated 95% butanol/5% H2O reagent underestimated the optical density (absorbance) of co-extractable compounds by 24% (P,<,0.01), whereas unheated 95% butanol/5% HCl blanks, incubated at room temperature, accurately measured the absorbance of the background matrix (P,<,0.01). Current procedures that estimate bound PA concentrations using the proanthocyanidin assay produce intensely coloured background matrices. Recovery measurements from total-bound PA extracts spiked with 1071 and 2142,µg anthocyanidin per tube indicated that existing analytical procedures that do not account for the spectral interference of co-extractable compounds overestimated (P,<,0.01) bound PA concentrations by 69 and 38% respectively. An innovative technique that generated an internal correction factor for each sample, using wavelength-scanning spectrophotometry and non-linear curve-fitting computer software, was developed. This procedure recovered 100% of added anthocyanidins from bound PA matrices. © 2002 Society of Chemical Industry [source]


On-line measurements of ,15N in biological fluids by a modified continuous-flow elemental analyzer with an isotope-ratio mass spectrometer

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 8 2008
Xu Wang
A modified continuous-flow elemental analyzer coupled to an isotope-ratio mass spectrometer (modified EA-IRMS) was tested for on-line ,15N measurement on urea solution and biological fluids (e.g. urine). The elemental analyzer configuration was adapted by adding a U-shaped cold trap and an X-pattern four-way valve for on-line trapping/venting of water from the liquid samples. Results indicate that the ,15N ratios show little variation (standard deviation (SD),=,0.05,) with a sample size above the equivalent N yield of 0.2,mg urea (0.092,mg N) when the mass spectrometer conditions were carefully optimized. By contrast, a significant logarithmic decrease in ,15N with sample size was observed but this can be offset by applying a linearity correction or blank correction when the sample size is between equivalent N yields of 0.05 and 0.2,mg urea. The blank corrected ,15N ratios give an overall precision of ,0.16, whereas the average precision for ,15N corrected using combined linearity and shift correction is 0.05,. The relatively large variation in blank corrected ,15N values may be attributed to the variability of the blank ,15N in the sequence. Therefore, the blank correction should be carefully performed in routine measurements. As a result, the linearity range of a modified EA-IRMS can be extended to a minimum sample size of 0.023,mg N. In addition, the reproducibility of the new system is good, as indicated by the precision (<0.2,) for a set of standards and unknowns. The data show that fluids containing nitrogen can be successfully analyzed in the modified EA-IRMS. Copyright © 2008 John Wiley & Sons, Ltd. [source]