Blowfly Populations (blowfly + population)

Distribution by Scientific Domains


Selected Abstracts


Effects of a toxicant on population growth rates: sublethal and delayed responses in blowfly populations

FUNCTIONAL ECOLOGY, Issue 6 2001
S. J. MOE
Summary 1,Previous studies have shown that cadmium exposure of blowfly populations (Lucilia sericata[Meigen 1826]) results in reduced population growth rate, but also in higher individual mass, because of reduced competition for food. In this study, the discrepancy between the positive effect on individual growth and the negative effect on population growth is investigated, by measuring direct and delayed effects of cadmium in the adult stage. 2,Blowfly populations were exposed to cadmium through the diet in four treatment combinations: larval stage, adult stage, both stages or neither stage. The effects on accumulation of cadmium, survival, development time, mass and reproductive rate were measured. 3,Cadmium was accumulated from both stages. 4,Individuals exposed to cadmium in the larval stage had higher mean pupal and adult mass (because of reduced densities), but also reduced adult longevity and fecundity. 5,Adult longevity and fecundity were also reduced by cadmium exposure in the adult stage. 6,In stage-structured populations, the link between individual-level and population-level responses to a toxicant may be complicated by stage-specific sensitivities to the toxicant, by delayed responses in the adult stage to sublethal effects in the juvenile stage, and by density-dependent compensatory responses to toxicant-induced mortality. [source]


The seasonal abundance of blowflies infesting drying fish in south-west India

JOURNAL OF APPLIED ECOLOGY, Issue 2 2001
R. Wall
Summary 1Blowfly infestation of sun-drying fish is a major economic problem in many developing countries of Asia, Africa and the Pacific. To consider the ecology of infestation, adult and larval blowfly populations were monitored between 27 October 1997 and 27 April 1999 at a fish landing and drying site, approximately 5 km north of Calicut, in Kerala state on the coast of south-west India. 2During the 548-day sampling period, a total of 96 953 adult Diptera was collected from 16 sticky targets, placed inside and outside eight fish-storage sheds. Of these, 91 912 (95%) were Chrysomya megacephala, 3719 (4%) were other Calliphoridae and 1322 (1%) were other species, largely Sarcophagidae. 3The population of C. megacephala showed pronounced seasonal fluctuations in response to climate, particularly relative humidity. Significantly shorter-frequency fluctuations within fish-processing sheds were also evident, the periodicity of which corresponded approximately to C. megacephala generation cycles. Spatial variation in C. megacephala abundance was evident within the site, higher populations occurring closest to the beach and numbers declining with distance inland. 4The pattern of drying fish infestation by C. megacephala broadly followed changes in the density of adult flies and the seasonal change in weather, with peaks during the monsoon and troughs in the dry hot periods. High relative humidity played a significant but secondary role in increasing infestation. 5Quantification of the relationship between larval infestation and percentage fish loss suggests that, given the infestation levels observed, between 10% and 60% post-harvest wet weight losses would be expected in the monsoon period, depending on the species of fish landed. 6The study emphasizes the importance of developing a clear understanding of the basic ecology and spatial and temporal dynamics of an insect pest, prior to the design or implementation of any pest management programme. [source]