Bit Error Rate (bit + error_rate)

Distribution by Scientific Domains

Terms modified by Bit Error Rate

  • bit error rate performance

  • Selected Abstracts


    Multicanier Modulation with Multistage Encoding/Decoding for a Nakagami Fading Channels

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 5 2000
    Lev Goldfeld
    The Multi Carrier Modulation (MCM) system with a multistage encoding/decoding scheme based on repetition and erasures-correcting decoding of block codes applied for a Nakagami fading channel is considered. Bit Error Rate (BER) as a function of Signal-to-Noise Ratio (SNR) has been found to agree well with the simulated results. It is shown that for low SNR the proposed system has a lower BER than both the MCM with Forward Error Correction (FEC) and MCM with optimal diversity reception and FEC. [source]


    Performance analysis of optically preamplified DC-coupled burst mode receivers

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 3 2009
    T. J. Zuo
    Bit error rate and threshold acquisition penalty evaluation is performed for an optically preamplified DC-coupled burst mode receiver using a moment generating function (MGF) description of the signal plus noise. The threshold itself is a random variable and is also described using an appropriate MGF. Chernoff bound (CB), modified Chernoff bound (MCB) and the saddle-point approximation (SPA) techniques make use of the MGF to provide the performance analyses. This represents the first time that these widely used approaches to receiver performance evaluation have been applied to an optically preamplified burst mode receiver and it is shown that they give threshold acquisition penalty results in good agreement with a prior existing approach, whilst having the facility to incorporate arbitrary receiver filtering, receiver thermal noise and non-ideal extinction ratio. A traditional Gaussian approximation (GA) is also calculated and comparison shows that it is clearly less accurate (it exceeds the upper bounds provided by CB and MCB) in the realistic cases examined. It is deduced, in common with the equivalent continuous mode analysis, that the MCB is the most sensible approach. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Analysis of the effects of Nyquist pulse-shaping on the performance of OFDM systems with carrier frequency offset

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 1 2009
    Peng Tan
    An exact method for calculating the bit error rate (BER) of an uncoded orthogonal frequency-division multiplexing (OFDM) system with transmitter Nyquist pulse-shaping over AWGN channels in the presence of frequency offset is derived. This method represents a unified way to calculate the BER of this system with different one- and two-dimensional subcarrier modulation formats. The precise BER expressions are obtained using a characteristic function method. The effects of several widely referenced Nyquist pulse-shapings, including the Franks pulse, the raised-cosine pulse, the ,better than' raised-cosine (BTRC) pulse, the second-order continuous window (SOCW), the double-jump pulse and the polynomial pulse on intercarrier interference (ICI) reduction and BER improvement of the system with carrier frequency offset are examined in the AWGN channel. The dependence of the BER on the roll-off factor of the pulse employed for a specific system in the presence of frequency offset is investigated. Analysis and numerical results show that the Franks pulse exhibits the best performance among the Nyquist pulses considered in most cases. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Wireless signal-preamble assisted Mach,Zehnder modulator bias stabilisation in wireless signal transmission over optical fibre

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 6 2008
    Debashis Chanda
    Lithium niobate based Mach,Zehnder electro-optic modulators are increasingly being used in high-speed digital as well as analog optical links. Depending on the application, digital or analog, the bias point of such a modulator is held constant at a particular point on the sinusoidal electrical to optical power transfer characteristics of the modulator. Bias point drift is one of the major limitations of lithium niobate based Mach,Zehnder electro-optic modulators. This increases the bit error rate of the system and affects adjacent channel performances. In one of the most popular methods of bias control, a pilot tone is used to track the bias point drift. However, pilot tone based bias tracking reduces overall intermodulation free dynamic range of the link. In this paper we propose a method where Mach,Zehnder modulator bias drift is tracked and maintained at the desired point by tracking the power variation of the preamble of wireless signal data frames. The method has no detrimental effects on system performances as no external signal is exclusively injected into the system for bias tracking purposes. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Joint data detection and estimation of time-varying multipath rayleigh fading channels in asynchronous DS-CDMA systems with long spreading sequences,

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 2 2007
    Pei Xiao
    In this paper, we present a joint approach to data detection and channel estimation for the asynchronous direct-sequence code-division multiple access (DS-CDMA) systems employing orthogonal signaling formats and long scrambling codes. Our emphasis is placed on different channel estimation algorithms since the performance of a communication system depends largely on its ability to retrieve an accurate measurement of the underlying channel. We investigate channel estimation algorithms under different conditions. The estimated channel information is used to enable coherent data detection to combat the detrimental effect of the multiuser interference and the multipath propagation of the transmitted signal. In the considered multiuser detector, we mainly use interference cancellation techniques, which are suitable for long-code CDMA systems. Interference cancellation and channel estimation using soft estimates of the transmitted signal is also proposed in this paper. Different channel estimation schemes are evaluated and compared in terms of mean square error (MSE) of channel estimation and bit error rate (BER) performance. Based on our analysis and numerical results, some recommendations are made on how to choose appropriate channel estimators in practical systems. Copyright © 2006 AEIT [source]


    Serially concatenated continuous phase modulation with symbol interleavers: performance, properties and design principles

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 4 2006
    Ming Xiao
    Serially concatenated continuous phase modulation (SCCPM) systems with symbol interleavers are investigated. The transmitted signals are disturbed by additive white Gaussian noise (AWGN). Compared to bit interleaved SCCPM systems, this scheme shows a substantial improvement in the convergence threshold at the price of a higher error floor. In addition to showing this property, we also investigate the underlying reason by error event analysis. In order to estimate bit error rate (BER) performance, we generalise traditional union bounds for a bit interleaver to this non-binary interleaver. For the latter, both the order and the position of permuted non-zero symbols have to be considered. From the analysis, some principal properties are identified. Finally, some design principles are proposed. Our paper concentrates on SCCPM, but the proposed analysis methods and conclusions can be widely used in many other systems such as serially concatenated trellis coded modulation (SCTCM) et cetera. Copyright © 2006 AEIT [source]


    Load-Adaptive MUI/ISI-Resilient Generalized Multi-Carrier CDMA with Linear and DF Receivers

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 6 2000
    Georgios B. Giannakis
    A plethora of single-carrier and multi-carrier (MC) CDMA systems have been proposed recently to mitigate intersymbol interference (ISI) and eliminate multiuser interference (MUI). We present a unifying all-digital Generalized Multicanier CDMA framework which enables us to describe existing CDMA schemes and to highlight thorny problems associated with them. To improve the bit error rate (BER) performance of existing schemes, we design block FIR transmitters and decision feedback (DF) receivers based on an inner-code/outer-code principle, which guarantees MUI/ISI-elimination regardless of the frequency-selective physical channel. The flexibility of our framework allows further BER enhancements by taking into account the load in the system (number of active users), while blind channel estimation results in bandwidth savings. Simulations illustrate the superiority of our framework over competing MC CDMA alternatives especially in the presence of uplink multipath channels. [source]


    Free space quantum key distribution: Towards a real life application

    FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 8-10 2006
    H. Weier
    Abstract Quantum key distribution (QKD) [1] is the first method of quantum information science that will find its way into our everyday life. It employs fundamental laws of quantum physics to ensure provably secure symmetric key generation between two parties. The key can then be used to encrypt and decrypt sensitive data with unconditional security. Here, we report on a free space QKD implementation using strongly attenuated laser pulses over a distance of 480 m. It is designed to work continuously without human interaction. Until now, it produces quantum keys unattended at night for more than 12 hours with a sifted key rate of more than 50 kbit/s and a quantum bit error rate between 3% and 5%. [source]


    Corruption-aware adaptive increase and adaptive decrease algorithm for TCP error and congestion controls in wireless networks

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 5 2009
    Lin Cui
    Abstract The conventional TCP tends to suffer from performance degradation due to packet corruptions in the wireless lossy channels, since any corruption event is regarded as an indication of network congestion. This paper proposes a TCP error and congestion control scheme using corruption-aware adaptive increase and adaptive decrease algorithm to improve TCP performance over wireless networks. In the proposed scheme, the available network bandwidth is estimated based on the amount of the received integral data as well as the received corrupted data. The slow start threshold is updated only when a lost but not corrupted segment is detected by sender, since the corrupted packets still arrive at the TCP receiver. In the proposed scheme, the duplicated ACKs are processed differently by sender depending on whether there are any lost but not corrupted segments at present. Simulation results show that the proposed scheme could significantly improve TCP throughput over the heterogeneous wired and wireless networks with a high bit error rate, compared with the existing TCP and its variants. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Performance evaluation for asynchronous MC-CDMA systems with a symbol timing offset

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 4 2009
    Myonghee Park
    Abstract This paper models a symbol timing offset (STO) with respect to the guard period and the maximum access delay time for asynchronous multicarrier-code division multiple access systems over frequency-selective multipath fading channels. Analytical derivation shows that STO causes desired signal power degradation and generates self-interferences. This effect of the STO on the average bit error rate (BER) and the effective signal-to-noise ratio (SNR) is evaluated using the semi-analytical method, and the approximated BER and the SNR loss caused by STO are then obtained as closed-form expressions. The tightness between the semi-analytical result and the approximated one is verified for the different STOs and SNRs. Furthermore, the derived analytical results are verified via Monte Carlo simulations. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Error-aware and energy-efficient routing approach in MANETs

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 1 2009
    Liansheng Tan
    Abstract The lifetime of a network is the key design factor of mobile ad hoc networks (MANETs). To prolong the lifetime of MANETs, one is forced to attain a tradeoff of minimizing the energy consumption and load balancing. In MANETs, energy waste resulting from retransmission due to high bit error rate (BER) and high frame error rate (FER) of wireless channel is significant. In this paper, we propose two novel protocols termed multi-threshold routing protocol (MTRP) and enhanced multi-threshold routing protocol (EMTRP). MTRP divides the total energy of a wireless node into multiple ranges. The lower bound of each range corresponds to a threshold. The protocol iterates from the highest threshold to the lowest one and chooses those routes with bottleneck energy being larger than the current threshold during each iteration. This approach thus avoids overusing certain routes and achieves load balancing. If multiple routes satisfy the threshold constraint, MTRP selects a route with the smallest hop count to further attain energy efficiency. Based on MTRP, EMTRP further takes channel condition into consideration and selects routes with better channel condition and consequently reduces the number of retransmissions and saves energy. We analyze the average loss probability (ALP) of the uniform error model and Gilbert error model and give a distributed algorithm to obtain the maximal ALP along a route. Descriptions of MTRP and EMTRP are given in pseudocode form. Simulation results demonstrate that our proposed EMTRP outperforms the representative protocol CMMBCR in terms of total energy consumption and load balancing. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Kalman filter-based channel estimation and ICI suppression for high-mobility OFDM systems

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 10 2008
    Prerana Gupta
    Abstract The use of orthogonal frequency division multiplexing (OFDM) in frequency-selective fading environments has been well explored. However, OFDM is more prone to time-selective fading compared with single-carrier systems. Rapid time variations destroy the subcarrier orthogonality and introduce inter-carrier interference (ICI). Besides this, obtaining reliable channel estimates for receiver equalization is a non-trivial task in rapidly fading systems. Our work addresses the problem of channel estimation and ICI suppression by viewing the system as a state-space model. The Kalman filter is employed to estimate the channel; this is followed by a time-domain ICI mitigation filter that maximizes the signal-to-interference plus noise ratio (SINR) at the receiver. This method is seen to provide good estimation performance apart from significant SINR gain with low training overhead. Suitable bounds on the performance of the system are described; bit error rate (BER) performance over a time-invariant Rayleigh fading channel serves as the lower bound, whereas BER performance over a doubly selective system with ICI as the dominant impairment provides the upper bound. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Service based CAC with QoS guarantee in mobile wireless cellular networks

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 9 2005
    Robert G. Fry
    Abstract The increasing variety and complexity of traffic in today's mobile wireless networks means that there are more restrictions placed on a network in order to guarantee the individual requirements of the different traffic types and users. Call admission control (CAC) plays a vital role in achieving this. In this paper, we propose a CAC scheme for multiple service systems where the predicted call usage of each service is used to make the admission decision. Our scheme enables real-time traffic to be transmitted using shared bandwidth without quality of service (QoS) requirements being exceeded. This ensures that the utilization of the available wireless bandwidth is maximized. Information about the channel usage of each service is used to estimate the capacity of the cell in terms of the number of users that can achieve a certain bit error rate (BER). Priorities assigned to each service are used to allocate the network capacity. An expression for the handoff dropping probability is derived, and the maximum acceptance rate for each service that results in the estimated dropping probability not exceeding its QoS requirements is calculated. Each call is then accepted with equal probability throughout the duration of a control period. Achieved QoS during the previous control period is used to update the new call acceptance rates thus ensuring the dropping probability remains below the specified threshold. Simulations conducted in a wideband CDMA environment with conversational, streaming, interactive and background sources show that the proposed CAC can successfully meet the hard restraint on the dropping probability and guarantee the required BER for multiple services. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Selective partial PIC for wireless CDMA communications

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 6 2003
    Filippo Belloni
    Abstract This paper deals with a cancellation multiuser detector for CDMA communication systems. The proposed receiver, defined as selective partial parallel interference cancellation (SP-PIC), is supposed to be used at the end of an up-link channel characterized by multipath fading phenomena. The SP-PIC main feature is to perform a weighted selective cancellation of the co-channel interfering signals according to the received power level. With respect to other approaches, the proposed detector exhibits an improved bit error rate (BER) and a low computational complexity, linear with the number of users. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Bandwidth-efficient turbo coding over Rayleigh fading channels

    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 7 2002
    Stéphane Y. Le Goff
    Abstract Introduced in 1993, turbo codes can achieve high coding gains close to the Shannon limit. In order to design power and bandwidth-efficient coding schemes, several approaches have been introduced to combine high coding rate turbo codes with multilevel modulations. The coding systems thus obtained have been shown to display near-capacity performance over additive white Gaussian noise (AWGN) channels. For communications over fading channels requiring large coding gain and high bandwidth efficiency, it is also interesting to study bit error rate (BER) performance of turbo codes combined with high order rectangular QAM modulations. To this end, we investigate, in this paper, error performance of several bandwidth-efficient schemes designed using the bit-interleaved coded modulation approach that has proven potentially very attractive when powerful codes, such as turbo codes, are employed. The structure of these coding schemes, termed ,bit-interleaved turbo-coded modulations' (BITCMs), is presented in a detailed manner and their BER performance is investigated for spectral efficiencies ranging from 2 to 7 bit/s/Hz. Computer simulation results indicate that BITCMs can achieve near-capacity performance over Rayleigh fading channels, for all spectral efficiencies considered throughout the paper. It is also shown that the combination of turbo coding and rectangular QAM modulation with Gray mapping constitutes inherently a very powerful association, since coding and modulation functions are both optimized for operation in the same signal-to-noise ratio region. This means that no BER improvement is obtainable by employing any other signal constellation in place of the rectangular ones. Finally, the actual influence of the interleaving and mapping functions on error performance of BITCM schemes is discussed. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Active measurements of antenna diversity performances using a specific test-bed, in several environments

    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 3 2010
    Moctar Mouhamadou
    Abstract The diversity performances of the wireless devices operating in a multipath propagation environment are usually presented in terms of correlation coefficient, diversity gain and effective diversity gain. These parameters can be measured in reverberation chamber. This paper presents some active measurements of antenna diversity performances on a small wireless terminal in several realistic environments. The measurements were performed in the WiMax band, i.e. at 3.5 GHz, in a reverberation chamber where the channel is statistically uniform, in a real indoor propagation channel, and in an outdoor-to-indoor environment. The diversity performances are evaluated by using a specific test-bed constituted by an arbitrary signal generator and two radio-frequency digitizers. The effectiveness of diversity is presented in terms of effective diversity gain, signal to noise ratio, bit error rate and frame error rate. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010. [source]


    Analyzing GPS signals to investigate path diversity effects of non-geostationary orbit satellite communication systems

    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 6 2002
    Hsin-Piao Lin
    Abstract The concept behind path diversity is that a user who can access several satellites simultaneously will be able to communicate more effectively than a user who could only access one. The success of this method depends on the environment, the satellite constellation, and diversity combining technology. This paper explores the path diversity effects of non-geostationary orbit (NGO) satellite personal communication services, for different degrees of user mobility, under various scenarios, using the constellation of the global positioning system (GPS). Measurements are taken near downtown Taipei. Three types of mobilities (fixed-point, pedestrian, and vehicular) are examined, and the switch diversity and maximum ratio combining method are applied to determine the path diversity gain and calculate bit error probability. The error probability performance of applying diversity schemes in coherent binary phase shift keying (BPSK) and non-coherent differential phase shift keying (DPSK) modulations over Rician fading channels are also analysed and evaluated by using the characteristic function method. The results show that fading can be significantly reduced and diversity greatly increased. A significant diversity gain and improvement in bit error rate (BER) can be expected in all cases by simply applying switch diversity scheme. Besides, for the maximum ratio combining method, the results imply that summing two satellite signals suffices to increase diversity and improve the bit error rate performance. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Active measurements of a mimo WiMAX-OFDM based system in reverberation chambers

    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 10 2010
    Adil Belhouji
    Abstract Electromagnetic reverberation chambers can be used for multiple-input multiple-output (MIMO) systems testing.Currently, the tests focus on parameters such as correlation, diversity gain, efficiency, etc., by using a vector network analyzer. In contrast with these passive tests, a novel way of MIMO systems characterization is described in this article. It consists on evaluating bit error rate (BER) levels of a MIMO WiMAX-OFDM system according to the Signal-to-Noise Ratio (SNR) by establishing an active link between the transmitter and the receiver. The measurement process is set up in a reverberation chamber, where multipath frequency selective channels are emulated. The obtained results are compared to a reference case with single-input single-output (SISO) to evaluate the real improvements made by the studied system. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52:2347,2352, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25465 [source]


    Construction, analysis and performance of generalised woven codes

    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 2 2004
    Martin Bossert
    Generalised woven codes (WC) are constructed by combining the woven code structure with the idea of generalised concatenated codes, also known as multi-level codes. The required nested inner convolutional code is analysed. The encoder structure of this new class of codes is described and fundamental code parameters are derived. It is shown that generalised WC have a free distance which is superior to that of comparable WC. Several iterative and non-iterative decoding strategies are discussed. It is shown that the decoding complexity of the nested inner code is not larger than the decoding complexity of its mother code. Finally, bit error rates obtained from simulations are discussed and compared with other code structures like WC. Copyright © 2004 AEI [source]