Biotransformation System (biotransformation + system)

Distribution by Scientific Domains


Selected Abstracts


Enhancement of the NAD(P)(H) Pool in Escherichia coli for Biotransformation

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2007
F. Heuser
Abstract In pyridine nucleotide-dependent, reductive whole cell biotransformation with resting cells of Escherichia coli, the availability of intracellular NAD(P)(H) is a pivotal point for an efficient and highly productive substrate conversion. The question whether an increase of the intracellular NAD(P)(H) concentration could increase the productivity was discussed controversially in the past. This is the first report on an E. coli strain with an increased NAD(P)(H) pool which was tested in a reductive biotransformation system for an increased productivity. Biotransformation was performed with a strain overexpressing a gene encoding an (R)-specific alcohol dehydrogenase for the stereospecific, NADPH-dependent reduction of methyl acetoacetate (MAA) to (R)-methyl-3-hydroxybutanoate (MHB). Cofactor regeneration was implemented via glucose oxidation by coexpression of a gene encoding glucose dehydrogenase. The specific MHB productivity (mmol mg,1 cell dry weight,1h,1) enabled a comparison between the E. coli,BL21(DE3) wild-type and a genetically modified strain. The enhancement of the NAD(P)(H) pool was achieved by genetic manipulation of the NAD(H) biosynthetic pathways. After simultaneous overexpression of the pncB and nadE genes, encoding nicotinic acid phosphoribosyltransferase and NAD synthetase, measurements of the total NAD(P)(H) pool, sizes showed a 7-fold and 2-fold increased intracellular concentration of NAD(H) and NADP(H), respectively. However, the implementation of an E.,coli strain carrying a genomically integrated pncB gene with an upstream T7,promoter for biotransformation did not result in reproducible increased specific cell productivity. [source]


Biotransformation of 4-Hydroxybenzen Derivatives by Hairy Root Cultures of Polygonum multiflorum Thunb.

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2007
Chun-Yan Yan
Abstract The biotransformation of four 4-hydroxybenzen derivatives (1,4-benzenediol (compound 1), 4-hydroxybenzaldehyde (compound 2), 4-hydroxybenzyl alcohol (compound 3) and 4-hydroxybenzoic acid (compound 4)) by the hairy root cultures of Polygonum multiflorum Thunb. as a new biocatalyst was investigated. It was found that the substrates were transformed to their corresponding glucosides, 4-hydroxyphenyl ,- D -glucopyranoside (arbutin, compound 1a), 4-hydroxymethylphenyl ,- D -glucopyranoside (gastrodin, compounds 2a, 3a) and 4-carboxyphenyl ,- D -glucopyranoside (compound 4a), respectively. In the meantime, the hairy roots of P. multiflorum were able to stereoselectively and regioselectively glucosylate phenolic hydroxyl groups of compounds 1,4, but the cultures could not glucosylate the aldehyde group of compound 2 or the benzylic hydroxyl group of compound 3, and no glucosyl esterification of carboxyl groups of compound 4 was detected. On the other hand, the result also showed that the hairy roots of P. multiflorum were able to reduce the 4-hydroxybenzaldehyde to its corresponding alcohol. This is the first report that substrate 4 has been converted into its ,- D -glucopyranoside by a plant biotransformation system. [source]


Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010
Dinesh Simkhada
Abstract The main functions of glycosylation are stabilization, detoxification and solubilization of substrates and products. To produce glycosylated products, Escherichia coli was engineered by overexpression of TDP- L -rhamnose and TDP-6-deoxy- D -allose biosynthetic gene clusters, and flavonoids were glycosylated by the overexpression of the glycosyltransferase gene from Arabidopsis thaliana. For the glycosylation, these flavonoids (quercetin and kaempferol) were exogenously fed to the host in a biotransformation system. The products were isolated, analyzed and confirmed by HPLC, LC/MS, and ESI-MS/MS analyses. Several conditions (arabinose, IPTG concentration, OD600, substrate concentration, incubation time) were optimized to increase the production level. We successfully isolated approximately 24,mg/L 3- O -rhamnosyl quercetin and 12.9,mg/L 3- O -rhamnosyl kaempferol upon feeding of 0.2,mM of the respective flavonoids and were also able to isolate 3- O -allosyl quercetin. Thus, this study reveals a method that might be useful for the biosynthesis of rhamnosyl and allosyl flavonoids and for the glycosylation of related compounds. Biotechnol. Bioeng. 2010;107: 154,162. © 2010 Wiley Periodicals, Inc. [source]


Optimization of catechol production by membrane-immobilized polyphenol oxidase: A modeling approach

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2003
A. Boshoff
Abstract Although previous research has focused on phenol removal efficiencies using polyphenol oxidase in nonimmobilized and immobilized forms, there has been little consideration of the use of polyphenol oxidase in a biotransformation system for the production of catechols. In this study, polyphenol oxidase was successfully immobilized on various synthetic membranes and used to convert phenolic substrates to catechol products. A neural network model was developed and used to model the rates of substrate utilization and catechol production for both nonimmobilized and immobilized polyphenol oxidase. The results indicate that the biotransformation of the phenols to their corresponding catechols was strongly influenced by the immobilization support, resulting in differing yields of catechols. Hydrophilic membranes were found to be the most suitable immobilization supports for catechol production. The successful biocatalytic production of 3-methylcatechol, 4-methylcatechol, catechol, and 4-chlorocatechol is demonstrated. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 1,7, 2003. [source]