| |||
Biophysical Techniques (biophysical + techniques)
Selected AbstractsStructure,activity relationship of the p55 TNF receptor death domain and its lymphoproliferation mutantsFEBS JOURNAL, Issue 5 2001Gert De Wilde Upon stimulation with tumor necrosis factor (TNF), the TNF receptor (TNFR55) mediates a multitude of effects both in normal and in tumor cells. Clustering of the intracellular domain of the receptor, the so-called death domain (DD), is responsible for both the initiation of cell killing and the activation of gene expression. To characterize this domain further, TNFR55 DD was expressed and purified as a thioredoxin fusion protein in Escherichia coli. Circular dichroism, steady-state and time-resolved fluorescence spectroscopy were used to compare TNFR55 DD with DDs of the Fas antigen (Fas), the Fas-associating protein with DD (FADD) and p75 nerve growth factor receptor, for which the 3-dimensional structure are already known. The structural information derived from the measurements strongly suggests that TNFR55 DD adopts a similar fold in solution. This prompted a homology modeling of the TNFR DD 3-D structure using FADD as a template. In vivo studies revealed a difference between the two lymphoproliferation (lpr) mutations. Biophysical techniques were used to analyze the effect of changing Leu351 to Ala and Leu351 to Asn on the global structure and its impact on the overall stability of TNFR55 DD. The results obtained from these experiments in combination with the modeled structure offer an explanation for the in vivo observed difference. [source] The histidine-phosphocarrier protein of Streptomyces coelicolor folds by a partially folded species at low pHFEBS JOURNAL, Issue 10 2003Gregorio Fernández-Ballester The folding of a 93-residue protein, the histidine-phosphocarrier protein of Streptomyces coelicolor, HPr, has been studied using several biophysical techniques, namely fluorescence, 8-anilinonaphthalene-1-sulfate binding, circular dichroism, Fourier transform infrared spectroscopy, gel filtration chromatography and differential scanning calorimetry. The chemical-denaturation behaviour of HPr, followed by fluorescence, CD and gel filtration, at pH 7.5 and 25 °C, is described as a two-state process, which does not involve the accumulation of thermodynamically stable intermediates. Its conformational stability under those conditions is ,G = 4.0 ± 0.2 kcal·mol,1 (1 kcal = 4.18 kJ), which makes the HPr from S. coelicolor the most unstable member of the HPr family described so far. The stability of the protein does not change significantly from pH 7,9, as concluded from the differential scanning calorimetry and thermal CD experiments. Conformational studies at low pH (pH 2.5,4) suggest that, in the absence of cosmotropic agents, HPr does not unfold completely; rather, it accumulates partially folded species. The transition from those species to other states with native-like secondary and tertiary structure, occurs with a pKa = 3.3 ± 0.3, as measured by the averaged measurements obtained by CD and fluorescence. However, this transition does not agree either with: (a) that measured by burial of hydrophobic patches (8-anilinonaphthalene-1-sulfate binding experiments); or (b) that measured by acquisition of native-like compactness (gel-filtration studies). It seems that acquisition of native-like features occurs in a wide pH range and it cannot be ascribed to a unique side-chain titration. These series of intermediates have not been reported previously in any member of the HPr family. [source] Temperature dependence and resonance assignment of 13C NMR spectra of selectively and uniformly labeled fusion peptides associated with membranesMAGNETIC RESONANCE IN CHEMISTRY, Issue 2 2004Michele L. Bodner Abstract HIV-1 and influenza viral fusion peptides are biologically relevant model fusion systems and, in this study, their membrane-associated structures were probed by solid-state NMR 13C chemical shift measurements. The influenza peptide IFP-L2CF3N contained a 13C carbonyl label at Leu-2 and a 15N label at Phe-3 while the HIV-1 peptide HFP-UF8L9G10 was uniformly 13C and 15N labeled at Phe-8, Leu-9 and Gly-10. The membrane composition of the IFP-L2CF3N sample was POPC,POPG (4:1) and the membrane composition of the HFP-UF8L9G10 sample was a mixture of lipids and cholesterol which approximately reflects the lipid headgroup and cholesterol composition of host cells of the HIV-1 virus. In one-dimensional magic angle spinning spectra, labeled backbone 13C were selectively observed using a REDOR filter of the 13C,15N dipolar coupling. Backbone chemical shifts were very similar at ,50 and 20°C, which suggests that low temperature does not appreciably change the peptide structure. Relative to ,50°C, the 20°C spectra had narrower signals with lower integrated intensity, which is consistent with greater motion at the higher temperature. The Leu-2 chemical shift in the IFP-L2CF3N sample correlates with a helical structure at this residue and is consistent with detection of helical structure by other biophysical techniques. Two-dimensional 13C,13C correlation spectra were obtained for the HFP-UF8L9G10 sample and were used to assign the chemical shifts of all of the 13C labels in the peptide. Secondary shift analysis was consistent with a ,-strand structure over these three residues. The high signal-to-noise ratio of the 2D spectra suggests that membrane-associated fusion peptides with longer sequences of labeled amino acids can also be assigned with 2D and 3D methods. Copyright © 2004 John Wiley & Sons, Ltd. [source] Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosisPROTEIN SCIENCE, Issue 10 2010Chi Wang Abstract The lethal genetic disease cystic fibrosis is caused predominantly by in-frame deletion of phenylalanine 508 in the cystic fibrosis transmembrane conductance regulator (CFTR). F508 is located in the first nucleotide-binding domain (NBD1) of CFTR, which functions as an ATP-gated chloride channel on the cell surface. The F508del mutation blocks CFTR export to the surface due to aberrant retention in the endoplasmic reticulum. While it was assumed that F508del interferes with NBD1 folding, biophysical studies of purified NBD1 have given conflicting results concerning the mutation's influence on domain folding and stability. We have conducted isothermal (this paper) and thermal (accompanying paper) denaturation studies of human NBD1 using a variety of biophysical techniques, including simultaneous circular dichroism, intrinsic fluorescence, and static light-scattering measurements. These studies show that, in the absence of ATP, NBD1 unfolds via two sequential conformational transitions. The first, which is strongly influenced by F508del, involves partial unfolding and leads to aggregation accompanied by an increase in tryptophan fluorescence. The second, which is not significantly influenced by F508del, involves full unfolding of NBD1. Mg-ATP binding delays the first transition, thereby offsetting the effect of F508del on domain stability. Evidence suggests that the initial partial unfolding transition is partially responsible for the poor in vitro solubility of human NBD1. Second-site mutations that increase the solubility of isolated F508del-NBD1 in vitro and suppress the trafficking defect of intact F508del-CFTR in vivo also stabilize the protein against this transition, supporting the hypothesize that it is responsible for the pathological trafficking of F508del-CFTR. [source] Expression, purification, and characterization of Thermotoga maritima membrane proteins for structure determinationPROTEIN SCIENCE, Issue 5 2006Linda Columbus Abstract Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in detergent micelles. In this study, an approach to the characterization of detergent-solubilized integral membrane proteins is presented. Eight Thermotoga maritima membrane proteins were screened for solubility in 11 detergents, and the resulting soluble protein,detergent complexes were characterized with small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and chemical cross-linking to evaluate the homogeneity, oligomeric state, radius of gyration, and overall fold. A new application of SAXS is presented, which does not require density matching, and NMR methods, typically used to evaluate soluble proteins, are successfully applied to detergent-solubilized membrane proteins. Although detergents with longer alkyl chains solubilized the most proteins, further characterization indicates that some of these protein,detergent complexes are not well suited for NMR structure determination due to conformational exchange and protein oligomerization. These results emphasize the need to screen several different detergents and to characterize the protein,detergent complex in order to pursue structural studies. Finally, the physical characterization of the protein,detergent complexes indicates optimal solution conditions for further structural studies for three of the eight overexpressed membrane proteins. [source] New insights into intracellular lipid binding proteins: The role of buried waterPROTEIN SCIENCE, Issue 10 2002Christian Lücke Abstract The crystal structures of most intracellular lipid binding proteins (LBPs) show between 5 and 20 internally bound water molecules, depending on the presence or the absence of ligand inside the protein cavity. The structural and functional significance of these waters has been discussed for several LBPs based on studies that used various biophysical techniques. The present work focuses on two very different LBPs, heart-type fatty acid binding protein (H-FABP) and ileal lipid binding protein (ILBP). Using high-resolution nuclear magnetic resonance spectroscopy, certain resonances belonging to side-chain protons that are located inside the water-filled lipid binding cavity were observed. In the case of H-FABP, the pH- and temperature-dependent behavior of selected side-chain resonances (Ser82 OgH and the imidazole ring protons of His93) indicated an unusually slow exchange with the solvent, implying that the intricate hydrogen-bonding network of amino-acid side-chains and water molecules in the protein interior is very rigid. In addition, holo H-FABP appeared to display a reversible self-aggregation at physiological pH. For ILBP, on the other hand, a more solvent-accessible protein cavity was deduced based on the pH titration behavior of its histidine residues. Comparison with data from other LBPs implies that the evolutionary specialization of LBPs for certain ligand types was not only because of mutations of residues directly involved in ligand binding but also to a refinement of the internal water scaffold. [source] Removal of the N-terminal hexapeptide from human ,2-microglobulin facilitates protein aggregation and fibril formationPROTEIN SCIENCE, Issue 5 2000G. Esposito Abstract The solution structure and stability of N-terminally truncated ,2-microglobulin (,N6,2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that ,N6,2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at ,M concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that ,N6,2-m is significantly less protected than its wild-type counterpart. Analysis of ,N6,2-m by NMR shows that this loss of protection occurs in , strands I, III, and part of II. At mM concentration gel filtration analysis shows that ,N6,2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of ,2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that ,N6,2-m could be a key intermediate of a proteolytic pathway of ,2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of ,2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between ,-strands far removed from this constrain is greatly perturbed. [source] Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution stateACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2009David A. Jacques The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations. [source] Purification of a crystallin domain of Yersinia crystallin from inclusion bodies and its comparison to native protein from the soluble fractionBIOMEDICAL CHROMATOGRAPHY, Issue 9 2006M. K. Jobby Abstract It has been established that many heterologously produced proteins in E. coli accumulate as insoluble inclusion bodies. Methods for protein recovery from inclusion bodies involve solubilization using chemical denaturants such as urea and guanidine hydrochloride, followed by removal of denaturant from the solution to allow the protein to refold. In this work, we applied on-column refolding and purification to the second crystallin domain D2 of Yersinia crystallin isolated from inclusion bodies. We also purified the protein from the soluble fraction (without using any denaturant) to compare the biophysical properties and conformation, although the yield was poor. On-column refolding method allows rapid removal of denaturant and refolding at high protein concentration, which is a limitation in traditionally used methods of dialysis or dilution. We were also able to develop methods to remove the co-eluting nucleic acids during chromatography from the protein preparation. Using this protocol, we were able to rapidly refold and purify the crystallin domain using a two-step process with high yield. We used biophysical techniques to compare the conformation and calcium-binding properties of the protein isolated from the soluble fraction and inclusion bodies. Copyright © 2006 John Wiley & Sons, Ltd. [source] |