| |||
Biomass Productivity (biomass + productivity)
Selected AbstractsEffect of oxygen transfer rates on alcohols production by Candida guilliermondii cultivated on soybean hull hydrolysateJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2009Ângela Cristina Schirmer-Michel Abstract BACKGROUND: In this research the use of soybean hull hydrolysate (SHH) as substrate for xylitol and ethanol production using an osmotolerant strain of Candida guilliermondii was studied. The production of alcohols was investigated in batch cultivations in which the variable parameter was the volumetric oxygen mass transfer coefficient (kLa) obtained from three different conditions of air supply: anaerobic (150 rpm, no aeration); microaerobic (300 rpm, 1 vvm), and aerobic (600 rpm, 2 vvm), corresponding to kLa values of 0; 8; and 46 h,1, respectively. RESULTS: SHH, although presenting a very high osmotic pressure (1413 mOsm kg,1), was completely metabolized under aerobic conditions with high biomass productivities of 0.49 g cells (L h),1, with little formation of ethanol. Xylitol was produced under microaeration, with product yield of 0.22 g g,1 xylose, with the formation of glycerol as a by-product. No xylose was metabolized under anaerobic conditions, but ethanol was produced from hexoses with high product yields of 0.5 g g,1. CONCLUSION: These results suggest that the hydrolysis of soybean hull and its conversion to ethanol and other alcohols could be an important use of this agro-industrial waste, which could be used for biofuel, xylitol or biomass production, depending on the aeration conditions of the cultures. Copyright © 2008 Society of Chemical Industry [source] Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactorsBIOTECHNOLOGY PROGRESS, Issue 2 2010Hosni Takache Abstract The validity of a simple, reliable, and useful recently published formula enabling to calculate the maximum volumetric biomass productivities in photobioreactors (PBRs) was investigated through the cultivation of the microalga Chlamydomonas reinhardtii. Experimental maximum kinetic performances accurately obtained in two different, artificially lightened torus-plane and cylindrical reactors having the same specific illuminated area confirmed the availability, power, and robustness of such formula. The predictive kinetic parameters previously proposed and validated with cyanobacteria were then proved general and robust in case of eukaryotic microalgae, as postulated in the founding article. In this case, an additional criterion requiring rigorous control of the working illuminated fraction , = 1 ± (15%) inside the reactor is demonstrated. For this, the usefulness and reliability of a generalized two-flux model accurately describing the radiation field inside turbid culture media of C. reinhardtii were also established in this article. These important results contribute to identify the main engineering factors governing light-limited PBRs functioning and then to clarify some misinterpretations widely reported in the literature. Together with the referenced previous work, this article gives a framework toward optimal conception of PBRs on a strong physical basis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systemsGLOBAL CHANGE BIOLOGY, Issue 9 2007M. A. A. ADVIENTO-BORBE Abstract Crop intensification is often thought to increase greenhouse gas (GHG) emissions, but studies in which crop management is optimized to exploit crop yield potential are rare. We conducted a field study in eastern Nebraska, USA to quantify GHG emissions, changes in soil organic carbon (SOC) and the net global warming potential (GWP) in four irrigated systems: continuous maize with recommended best management practices (CC-rec) or intensive management (CC-int) and maize,soybean rotation with recommended (CS-rec) or intensive management (CS-int). Grain yields of maize and soybean were generally within 80,100% of the estimated site yield potential. Large soil surface carbon dioxide (CO2) fluxes were mostly associated with rapid crop growth, high temperature and high soil water content. Within each crop rotation, soil CO2 efflux under intensive management was not consistently higher than with recommended management. Owing to differences in residue inputs, SOC increased in the two continuous maize systems, but decreased in CS-rec or remained unchanged in CS-int. N2O emission peaks were mainly associated with high temperature and high soil water content resulting from rainfall or irrigation events, but less clearly related to soil NO3 -N levels. N2O fluxes in intensively managed systems were only occasionally greater than those measured in the CC-rec and CS-rec systems. Fertilizer-induced N2O emissions ranged from 1.9% to 3.5% in 2003, from 0.8% to 1.5% in 2004 and from 0.4% to 0.5% in 2005, with no consistent differences among the four systems. All four cropping systems where net sources of GHG. However, due to increased soil C sequestration continuous maize systems had lower GWP than maize,soybean systems and intensive management did not cause a significant increase in GWP. Converting maize grain to ethanol in the two continuous maize systems resulted in a net reduction in life cycle GHG emissions of maize ethanol relative to petrol-based gasoline by 33,38%. Our study provided evidence that net GHG emissions from agricultural systems can be kept low when management is optimized toward better exploitation of the yield potential. Major components for this included (i) choosing the right combination of adopted varieties, planting date and plant population to maximize crop biomass productivity, (ii) tactical water and nitrogen (N) management decisions that contributed to high N use efficiency and avoided extreme N2O emissions, and (iii) a deep tillage and residue management approach that favored the build-up of soil organic matter from large amounts of crop residues returned. [source] Fermentation of enzymatic hydrolysates from olive stones by Pachysolen tannophilusJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2009Manuel Cuevas Abstract BACKGROUND: Olive stones were pretreated with liquid hot water (LHW or autohydrolysis) at maximum temperatures between 175 and 225 °C (severity factors, logR0, between 2.73 and 4.39) to be subjected (both liquid and solid components) afterwards to enzymatic hydrolysis with cellulases from Trichoderma viride. Ethanol fermentation of hydrolysates was performed with the non-traditional yeast Pachysolen tannophilus ATCC 32691. RESULTS: After the enzymatic step, yields of hemicellulose solubilization reached 100%, while the cellulose was only partially hydrolysed (23%, logR0 = 4.39). The maximum yields in total reducing sugars and acetic acid, at the upper end of the severity range, was close to 0.25 and 0.04 g g,1 dry stone, respectively. During the fermentation stage, the increase in R0 reduced the maximum specific growth rate, biomass productivity, and overall biomass yield. The overall yields of ethanol and xylitol ranged, respectively, from 0.18 to 0.25 g g,1 and from 0.01 to 0.13 g g,1. CONCLUSIONS: The results demonstrate the possibility of producing ethanol from olive stones, making use of the cellulose and hemicellulose fraction of the waste. It was confirmed that the overall yield in xylitol strongly depended on severity factor, while the overall yield in ethanol remained practically constant for all the pretreatment conditions tested. Copyright © 2008 Society of Chemical Industry [source] The fermentation of mixtures of D -glucose and D -xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanolJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2002Sebastián Sánchez Abstract The fermentation of mixtures of D -glucose and D -xylose by three non-traditional yeasts: Candida shehatae (ATCC 34887), Pachysolen tannophilus (ATCC 32691) and Pichia stipitis (ATCC 58376) have been studied to determine the optimal strain and initial culture conditions for the efficient production of ethanol. The comparison was made on the basis of maximum specific growth rate (µm), biomass productivity, the specific rates of total substrate consumption (qs) and ethanol production (qE) and the overall yields of ethanol and xylitol. All the experiments were performed in stirred-tank batch reactors at a temperature of 30,°C. The initial pH of the culture medium was 4.5. The highest values of µm (above 0.5,h,1) were obtained with P stipitis in cultures containing high concentrations of D -xylose. All three yeasts consumed the two monosaccharides in sequence, beginning with D -glucose. The values of qs diminished during the course of each experiment with all of the yeasts. The highest values of the specific rates of total substrate consumption and ethanol production were obtained with C shehatae (for t,=,10,h, qs and qE were above 5,g,g,1,h,1 and 2,g,g,1,h,1, respectively), although the highest overall ethanol yields were fairly similar with all three yeasts, at around 0.4,g,g,1. © 2002 Society of Chemical Industry [source] Responses of CAM species to increasing atmospheric CO2 concentrationsPLANT CELL & ENVIRONMENT, Issue 8 2000P. M. Drennan ABSTRACT Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water-use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco-mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)-mediated night-time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3,) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose-Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer-term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change. [source] Effect of partial harvesting strategies on Artemia biomass production in Vietnamese salt worksAQUACULTURE RESEARCH, Issue 9 2010Nguyen Thi Ngoc Anh Abstract The effect of partial harvest strategies on the production of Artemia biomass was evaluated for 12 weeks under Vietnamese salt farm conditions. The initial stocking density was 100 nauplii L,1. After 3 weeks of inoculation, Artemia adults were partially harvested at intervals of 1, 3, 6 and 9 days starting with an initial quantity of 30 kg ha,1 day,1 at first harvest, and then the quantity of harvestable biomass was adjusted according to the standing stock present in the culture pond, combined with the time needed to harvest these quantities and with the weight of biomass harvested in each pond. The results showed that in most cases, the total densities were not significantly different among harvesting frequencies (P>0.05). However, a relatively higher Artemia adult density and its standing stock were better maintained in the 3-day than in the 1-day interval, and were significantly higher compared with the other two harvesting frequencies. The total biomass yields were the highest (1587 kg ha,1) in the 3-day harvesting interval, followed by 1-, 6- and 9-day harvesting interludes, corresponding to 1323, 1091 and 975 kg ha,1 respectively. However, no statistical difference was observed between the 1- and the 3-day interval as well as between the 6- and the 9-day harvest schemes (P>0.05). The results of this study suggest that partial harvest of Artemia biomass performed every 3 days appears to be an appropriate strategy to enhance biomass productivity. [source] Grazing and landscape controls on nitrogen availability across 330 South African savanna sitesAUSTRAL ECOLOGY, Issue 7 2009JOSEPH M. CRAINE Abstract The availability of nitrogen (N) is an important determinant of ecosystem and community dynamics for grasslands and savannas, influencing factors such as biomass productivity, plant and herbivore composition, and losses of N to waters and the atmosphere. To better understand the controls over N availability at landscape to regional scales, we quantified a range of plant and soil characteristics at each of 330 sites in three regions of South Africa: Kruger National Park (KNP), private game reserves adjacent to KNP (private protected areas , PPAs) and Hluhluwe-iMfolozi Park (HiP). In comparing regions and sites within regions, grazing appeared to have a strong influence on N availability. Sites in the PPAs adjacent to KNP as well as sodic and alluvial sites in general typically had the highest N availability. The high N availability of these sites was not generally associated with greater potential N mineralization, but instead with less grass biomass and more forb biomass that indicated greater grazing pressure. Whereas sodic sites had a long history of high N availability as evidenced by their high soil ,15N, the greater N availability in the PPAs over the two parks appeared to be relatively recent. Grazer biomass, average potential mineralization rates and grass biomass for HiP were greater than KNP, yet there were no differences in N availability as indexed by soil and foliar ,15N between sites in the two parks. Although the short-term increase in N availability in PPAs is not necessarily deleterious, it is uncertain whether current productivity levels in those ecosystems is sustainable. With differences in management causing herbivore biomass to be 150% greater in the PPAs than the adjacent KNP, changes in plant communities and nitrogen cycling might lead to long-term degradation of these ecosystems, their ability to sustain herbivore populations, and also serve as an economic resource for the region. [source] Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up productionBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010Roger Huerlimann Abstract Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9,4.8,g,m,2,day,1 in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1,45.0,g,m,2,day,1) exceeded that of the other species by a factor 2,10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245,257. © 2010 Wiley Periodicals, Inc. [source] Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactorBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Liliana Rodolfi Abstract Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24, which attained 60% lipid content after nitrogen starvation, was grown in a 20-L Flat Alveolar Panel photobioreactor to study the influence of irradiance and nutrient (nitrogen or phosphorus) deprivation on fatty acid accumulation. Fatty acid content increased with high irradiances (up to 32.5% of dry biomass) and following both nitrogen and phosphorus deprivation (up to about 50%). To evaluate its lipid production potential under natural sunlight, the strain was grown outdoors in 110-L Green Wall Panel photobioreactors under nutrient sufficient and deficient conditions. Lipid productivity increased from 117 mg/L/day in nutrient sufficient media (with an average biomass productivity of 0.36 g/L/day and 32% lipid content) to 204 mg/L/day (with an average biomass productivity of 0.30 g/L/day and more than 60% final lipid content) in nitrogen deprived media. In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum followed by a nitrogen deprived phase to boost lipid synthesis) the oil production potential could be projected to be more than 90 kg per hectare per day. This is the first report of an increase of both lipid content and areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. The experiments showed that this marine eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical areas. Biotechnol. Bioeng. 2009;102: 100,112. © 2008 Wiley Periodicals, Inc. [source] Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactorBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006Davide Dionisi Abstract This article studies the operation of a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) at different applied organic load rates (OLRs). The process is based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. A mixture of acetic, lactic, and propionic acids at different concentrations (in the range 8.5,31.25 gCOD/L) was fed every 2 h in a sequencing batch reactor (SBR). The resulting applied OLR was in the range 8.5,31.25 gCOD/L/day. Even though, as expected, the increase in the OLR caused an increase in biomass concentration (up to about 8.7 g COD/L), it also caused a relevant decrease of maximal polymer production rate. This decrease in polymer production rate was related to the different extent of "feast and famine" conditions, as function of the applied OLR and of the start-up conditions. As a consequence the best performance of the process was obtained at an intermediate OLR (20 gCOD/L/day) where both biomass productivity and PHA storage were high enough. However, at this high OLR the process was unstable and sudden decrease of performance was also observed. The sludge characterized by the highest PHA storage response was investigated by 16S rDNA clone library. The clone library contained sequences mostly from PHA producers (e.g., Alcaligenes and Comamonas genera); however many genera and among them, one of the dominant (Thauera), were never described before in relation to PHA storage response. © 2005 Wiley Periodicals, Inc. [source] |