| |||
Biomass Production (biomass + production)
Kinds of Biomass Production Selected AbstractsHydrology and nitrogen balance of a seasonally inundated Danish floodplain wetlandHYDROLOGICAL PROCESSES, Issue 3 2004Hans Estrup Andersen Abstract This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt,clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near-saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day,1 and peak rate is 5·6 mm day,1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt,clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3,N ha,1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above-ground vegetation is high,8·56 t dry matter ha,1 year,1 and 103 kg N ha,1 year,1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha,1year,1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above-ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd. [source] Effects of Whey Permeate-Based Medium on the Proximate Composition of Lentinus edodes in the Submerged CultureJOURNAL OF FOOD SCIENCE, Issue 6 2006Xiaojun Jeffrey Wu ABSTRACT:, Biomass production, crude water-soluble polysaccharide (WSP), ash content, mineral profile, and crude protein content were determined for Lentinus edodes mycelia grown on whey permeate (WP)-based medium with lactose content of 4.5% or defined synthetic medium, and harvested after 5, 10, 15, or 20 d of fermentation at 25 °C. Harvesting time and the type of media interact to alter the chemical content of mycelia. Mycelia grown in WP had greater (P < 0.05) WSP and ash than mycelia grown in the synthetic media. A maximum production of WSP was obtained on the 10th day (4.1 × 102± 71 mg WSP/g dried mycelia) from mycelia grown on the WP-based media. Mycelia grown on WP harvested on the 20th day had the highest value in ash content (18 ± 3%). Potassium was found to be the main constituent in the ash of mushroom mycelia, which was followed by phosphorus, sodium, calcium, and magnesium. A steady increase of ash content was only noted in mycelia grown on WP. The calcium content of WP-grown mycelia was at least 10 times higher compared to mycelia grown in the control media regardless the harvesting time. Data in this research suggested that WP was more favorable than the synthetic media in the production of WSP, which is traditionally known for their medicinal value in L. edodes. [source] Rangeland development of the Mu Us Sandy Land in semiarid China: an analysis using Landsat and NOAA remote sensing dataLAND DEGRADATION AND DEVELOPMENT, Issue 2 2003M. C. Runnström Abstract Degradation of the dry semiarid ecosystems in the Mu Us Sandy Land of north central China was explored using high-resolution satellite images from 1978, 1987 and 1996. This study monitored both changes in grassland biomass production and reclamation activities to detect the nature and scale of land degradation since major economic reforms were introduced in 1978. The position of the high-resolution images within the vegetation cycles was inspected from National Oceanographic and Atmospheric Administration (NOAA) NDVI images at 10-day repetition and seasonal precipitation patterns. A model was developed to categorize changes in the vegetation signal activity from 30,×,30,m pixels into vegetation cover development and land-use changes between 1987 and 1996. A general increase of biomass production was evident despite the rapid increase in numbers of grazing animals. This increase in biomass was confirmed by the NOAA time series, which also revealed annual variability related to the amount and pattern of the seasonal rains. Rangeland conversion to farmland was detected, and this process has increased the area of cultivation almost fivefold. The classified area of cultivation corresponds with reported statistical records, also showing that irrigation features in virtually 100 per cent of the sown area. Signs of declining biological production, indicating land degradation processes, are few. Biomass production has increased, with a gain in the economic output from both crop and animal production. The early start of active measures to halt desertification has increased vegetation cover and lowered wind erosion potential and grasslands seems to be managing the high levels of grazing pressure. Copyright © 2003 John Wiley & Sons, Ltd. [source] Nutrient limitation along eutrophic rivers?APPLIED VEGETATION SCIENCE, Issue 3 2009K input in a species-rich floodplain hay meadow, Roles of N Abstract Question: Is the growth of biodiverse floodplain plant communities along nutrient-rich lowland rivers still limited by nutrients? Location: Floodplains of the river Overijsselse Vecht, the Netherlands. Methods: Soil characteristics and potential nutrient limitation of the vegetation types were studied in two hay meadows, both belonging to the Fritillario-Alopecuretum, in the floodplain of the eutrophic river Overijsselse Vecht (the Netherlands). The meadows had different fertilization histories: one was a species-rich hay meadow managed as a nature reserve, the other a newly created nature reserve that had been used as an agricultural pasture before. Sods collected from both locations were transferred to a glasshouse, fertilized weekly with NP, NK, PK, NPK or control solutions and harvested three times a year during two successive growing seasons. Results: Biomass production of sods from both locations of this floodplain still appeared to be limited by N. Interestingly, the sods from the existing nature reserve were also limited by K, but only in the second year. Fertilization caused a shift in the relative abundance of the different plant families. Tissue nutrient concentrations were increased by fertilization with the nutrient in question, but decreased if biomass production was stimulated. Conclusions: Even in eutrophic river areas, the nutrient concentrations of the surface water may still determine the development of potentially biodiverse floodplain vegetation. Nomenclature: Van der Meijden (2005) [source] Dispersal frequency affects local biomass production by controlling local diversityECOLOGY LETTERS, Issue 6 2006Birte Matthiessen Abstract Dispersal is a major factor regulating the number of coexisting species, but the relationship between species diversity and ecosystem processes has mainly been analysed for communities closed to dispersal. We experimentally investigated how initial local diversity and dispersal frequency affect local diversity and biomass production in open benthic microalgal metacommunities. Final local species richness and local biomass production were strongly influenced by dispersal frequency but not by initial local diversity. Both final local richness and final local biomass showed a hump-shaped pattern with increasing dispersal frequency, with a maximum at intermediate dispersal frequencies. Consequently, final local biomass increased linearly with increasing final richness. We conclude that the general relationship between richness and ecosystem functioning remains valid in open systems, but the maintenance of ecosystem processes significantly depends on the effects of dispersal on species richness and local interactions. [source] Top predator control of plant biodiversity and productivity in an old-field ecosystemECOLOGY LETTERS, Issue 2 2003Oswald J. Schmitz Abstract Predators can have strong indirect effects on plants by altering the way herbivores impact plants. Yet, many current evaluations of plant species diversity and ecosystem function ignore the effects of predators and focus directly on the plant trophic level. This report presents results of a 3-year field experiment in a temperate old-field ecosystem that excluded either predators, or predators and herbivores and evaluated the consequence of those manipulations on plant species diversity (richness and evenness) and plant productivity. Sustained predator and predator and herbivore exclusion resulted in lower plant species evenness and higher plant biomass production than control field plots representing the intact natural ecosystem. Predators had this diversity-enhancing effect on plants by causing herbivores to suppress the abundance of a competitively dominant plant species that offered herbivores a refuge from predation risk. [source] Dynamics of Benzene and Toluene Degradation in Pseudomonas putida F1 in the Presence of the Alternative Substrate SuccinateENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2007I. Rüegg Abstract In batch and continuous culture, the regulation of benzene and toluene degradation by Pseudomonas putida,F1 was investigated in the presence of the alternative carbon and energy source succinate. In batch culture, benzene and toluene were used simultaneously, whereas succinate suppressed benzene consumption under carbon excess conditions resulting in diauxic growth. In carbon-limited continuous culture mixed substrate growth was observed. Since in nature low substrate concentrations and ever changing conditions prevail, this paper focuses on the dynamics of benzene/toluene degradation, biomass synthesis, and the regulation of benzene/toluene-degrading enzymes in cultures growing continuously at a dilution rate of 0.1,h,1, when shifting the supply of the carbon and energy source from succinate to various mixtures of succinate and benzene/toluene, or to benzene only. When the succinate concentration was kept constant (1.25,mM) and the medium was supplemented with benzene (2,mM), growth with benzene began already two hours after the shift. In contrast, replacing succinate with benzene only led to a wash out of biomass for more then ten hours, before biomass production from benzene started. A striking and reproducible transition pattern was observed for all shifts where the succinate concentration was reduced or succinate was omitted. After an initial period of biomass production from benzene, the culture collapsed and a wash-out of biomass was observed. However, this wash-out was not accompanied by an increase in benzene in the cultivation liquid, indicating a benzene uptake without conversion into biomass. Another possibility is that in phases of low biomass concentrations, cells were only able to use the low amounts of benzene/toluene dissolved in the cultivation liquid yielding low biomass concentrations whereas in phases of high biomass concentrations, they were able to rapidly utilize the aromatic solvents so that additional benzene from the gas phase diffused into the cultivation liquid resulting in more biomass production. In most cases, growth resumed again after 10 to 80,h. Currently, the reasons for the decrease in biomass after the first rise are unknown. However, several indications rule out intoxication of the cells by either the solvents benzene or toluene themselves, or by toxic degradation intermediates, or by-products. [source] Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern OceanENVIRONMENTAL MICROBIOLOGY, Issue 8 2009Helge-Ansgar Giebel Summary We assessed the composition of the bacterioplankton in the Atlantic sector of the Southern Ocean in austral fall and winter and in New Zealand coastal waters in summer. The various water masses between the subtropics/Agulhas,Benguela boundary region and the Antarctic coastal current exhibited distinct bacterioplankton communities with the highest richness in the polar frontal region, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene fragments. The SAR11 clade and the Roseobacter clade-affiliated (RCA) cluster were quantified by real-time quantitative PCR. SAR11 was detected in all samples analysed from subtropical waters to the coastal current and to depths of > 1000 m. In fall and winter, this clade constituted < 3% to 48% and 4,28% of total bacterial 16S rRNA genes respectively, with highest fractions in subtropical to polar frontal regions. The RCA cluster was only present in New Zealand coastal surface waters not exceeding 17°C, in the Agulhas,Benguela boundary region (visited only during the winter cruise), in subantarctic waters and in the Southern Ocean. In fall, this cluster constituted up to 36% of total bacterial 16S rRNA genes with highest fractions in the Antarctic coastal current and outnumbered the SAR11 clade at most stations in the polar frontal region and further south. In winter, the RCA cluster constituted lower proportions than the SAR11 clade and did not exceed 8% of total bacterial 16S rRNA genes. In fall, the RCA cluster exhibited significant positive correlations with latitude and ammonium concentrations and negative correlations with concentrations of nitrate, phosphate, and for near-surface samples also with chlorophyll a, biomass production of heterotrophic prokaryotes and glucose turnover rates. The findings show that the various water masses between the subtropics and the Antarctic coastal current harbour distinct bacterioplankton communities. They further indicate that the RCA cluster, despite the narrow sequence similarity of > 98% of its 16S rRNA gene, is an abundant component of the heterotrophic bacterioplankton in the Southern Ocean, in particular in its coldest regions. [source] Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in MoroccoENVIRONMENTAL TOXICOLOGY, Issue 1 2002B. Oudra Abstract In Morocco, the occurrence of toxic cyanobacteria blooms is confirmed in some water bodies used for recreational and/or as drinking water reservoirs. According to WHO recommendations, the establishment of a monitoring program for microcystins is a necessity. This paper presents toxicological studies of 19 toxic cyanobacteria strains of Microcystis, Synechocystis, Pseudanabaena, and Oscillatoria. These strains were isolated from various water bodies including natural lakes, reservoirs, and ponds located in central regions of Morocco. The isolation, culture, and biomass production of these strains was made on Z8 or BG13 media under laboratory controlled conditions. The hepatotoxicity of cyanobacterial lyophilized material was confirmed by mouse bioassays. The amount of microcystins produced by each strain was determined by the enzyme-linked immunosorbent assay (ELISA). The detection and identification of microcystin variants was performed by high performance liquid chromatography (HPLC) with photodiode array detection. Almost all strains showed medium to high toxicity, the estimated LD50 i.p mice bioassay ranged between 28 to 350 mg/kg body weight. The concentrations of microcystins varied between 2.16 to 944 ,g/g and 26.8 to 1884 ,g/g dry weight determined by ELISA and HPLC, respectively. The screening of bloom-forming and microcystin producer cyanobacteria strains in these fresh water bodies leads us to propose the need for the establishment of a survey of cyanobacteria and a cyanotoxin-monitoring program. © 2002 by Wiley Periodicals, Inc. Environ Toxicol 17: 32,39, 2002 [source] Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOCFEMS MICROBIOLOGY ECOLOGY, Issue 2 2003Silke Langenheder Abstract The impact of salinity on the composition and functional performance (biomass production, growth efficiency and growth rates) of bacterial communities was investigated using batch cultures growing on dissolved organic carbon from a river draining into the Northern Baltic Sea. The cultures were adjusted to riverine or estuarine salinity levels and inoculated with bacteria from these two environments. Bacterial growth efficiencies differed in response to salinity and the origin of the inoculum. When salinity was adjusted to correspond to the salinity at the site where the inoculum was retrieved, growth efficiency was relatively high (11.5±2.6%). However, when bacteria were confronted with a shift in salinity, growth efficiency was lower (7.5±2.0%) and more of the utilized carbon was respired. In contrast, growth rates were higher when bacteria were exposed to a change in salinity. The composition of the bacterial communities developing in the batch cultures differed, as shown by 16S rDNA DGGE, depending on the origin of the inoculum and salinity. Reverse and direct DNA,DNA hybridization revealed salinity optima in the growth of specific bacterial strains as well as broader phylogenetic groups. Strains belonging to the ,- and ,- Proteobacteria, Actinobacteria and ,- Proteobacteria other than the genus Pseudomonas showed higher relative abundance under freshwater conditions, whereas strains of the genus Pseudomonas and the Cytophaga,Flavobacterium,Bacteroides group were favored by estuarine conditions. Generally, our results demonstrate functional changes associated with changes in community composition. We suggest that even moderate changes in salinity affect bacterial community composition, which subsequently leads to altered growth characteristics. [source] Species richness and susceptibility to heat and drought extremes in synthesized grassland ecosystems: compositional vs physiological effectsFUNCTIONAL ECOLOGY, Issue 6 2004L. VAN PEER Summary 1We investigated effects of declining plant species richness (S) on resistance to extremes in grassland communities. 2Synthesized model ecosystems of different S, grown outdoors in containers, were exposed to a stress peak combining heat and drought. The heat wave was induced experimentally by infrared irradiation in free air conditions. 3Before the heat wave, the more species-rich communities produced more biomass as a result of a large and positive complementarity effect that outweighed a small negative selection effect. 4Water use during the heat wave was likewise enhanced by S, which could not be attributed to dominance of ,water-wasting' species. Instead, water consumption at high S exceeded that expected from changes in community biomass and biomass composition. The observed enhancement of resource (water) acquisition under stress with increasing S therefore probably originated from complementarity. 5Despite enhanced water use in the more diverse communities, plant survival was significantly less, affecting all species alike. Physiological stress, recorded as photochemical efficiency of photosystem II electron transport, was significantly greater. Before the heat wave, the changes in biomass composition that coincided with increasing S did not favour species that would later prove intrinsically sensitive or insensitive. 6Complementarity in resource use for biomass production had a cost in terms of reduced survival under stress, despite the likelihood of complementarity in water acquisition during exposure. The greater loss of individuals from the more diverse grasslands suggests enhanced risk of local extinction. [source] Environmental and economic analysis of the fully integrated biorefineryGCB BIOENERGY, Issue 5 2009ELIZABETH D. SENDICH Abstract Cellulosic biofuel systems have the potential to significantly reduce the environmental impact of the world's transportation energy requirements. However, realizing this potential will require systems level thinking and scale integration. Until now, we have lacked modeling tools for studying the behavior of integrated cellulosic biofuel systems. In this paper, we describe a new research tool, the Biorefinery and Farm Integration Tool (BFIT) in which the production of fuel ethanol from cellulosic biomass is integrated with crop and animal (agricultural) production models. Uniting these three subsystems in a single combined model has allowed, for the first time, basic environmental and economic analysis of biomass production, possible secondary products, fertilizer production, and bioenergy production across various regions of the United States. Using BFIT, we simulate cellulosic ethanol production embedded in realistic agricultural landscapes in nine locations under a collection of farm management scenarios. This combined modeling approach permits analysis of economic profitability and highlights key areas for environmental improvement. These results show the advantages of introducing integrated biorefinery systems within agricultural landscapes. This is particularly true in the Midwest, which our results suggest is a good setting for the cellulosic ethanol industry. Specifically, results show that inclusion of cellulosic biofuel systems into existing agriculture enhances farm economics and reduces total landscape emissions. Model results also indicate a limited ethanol price effect from increased biomass transportation distance. Sensitivity analysis using BFIT revealed those variables having the strongest effects on the overall system performance, namely: biorefinery size, switchgrass yield, and biomass farm gate price. [source] A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus×giganteus: description, parameterization and validationGCB BIOENERGY, Issue 4 2009FERNANDO E. MIGUEZ Abstract Biomass based bioenergy is promoted as a major sustainable energy source which can simultaneously decrease net greenhouse gas emissions. Miscanthus×giganteus (M.×giganteus), a C4 perennial grass with high nitrogen, water, and light use efficiencies, is regarded as a promising energy crop for biomass production. Mathematical models which can accurately predict M.×giganteus biomass production potential under different conditions are critical to evaluate the feasibility of its production in different environments. Although previous models based on light-conversion efficiency have been shown to provide good predictions of yield, they cannot easily be used in assessing the value of physiological trait improvement or ecosystem processes. Here, we described in detail the physical and physiological processes of a previously published generic mechanistic eco-physiological model, WIMOVAC, adapted and parameterized for M.×giganteus. Parameterized for one location in England, the model was able to realistically predict daily field diurnal photosynthesis and seasonal biomass at a range of other sites from European studies. The model provides a framework that will allow incorporation of further mechanistic information as it is developed for this new crop. [source] Solar UVB and warming affect decomposition and earthworms in a fen ecosystem in Tierra del Fuego, ArgentinaGLOBAL CHANGE BIOLOGY, Issue 10 2009JOHANN G. ZALLER Abstract Combined effects of co-occurring global climate changes on ecosystem responses are generally poorly understood. Here, we present results from a 2-year field experiment in a Carex fen ecosystem on the southernmost tip of South America, where we examined the effects of solar ultraviolet B (UVB, 280,315 nm) and warming on above- and belowground plant production, C : N ratios, decomposition rates and earthworm population sizes. Solar UVB radiation was manipulated using transparent plastic filter films to create a near-ambient (90% of ambient UVB) or a reduced solar UVB treatment (15% of ambient UVB). The warming treatment was imposed passively by wrapping the same filter material around the plots resulting in a mean air and soil temperature increase of about 1.2 °C. Aboveground plant production was not affected by warming, and marginally reduced at near-ambient UVB only in the second season. Aboveground plant biomass also tended to have a lower C : N ratio under near-ambient UVB and was differently affected at the two temperatures (marginal UVB × temperature interaction). Leaf decomposition of one dominant sedge species (Carex curta) tended to be faster at near-ambient UVB than at reduced UVB. Leaf decomposition of a codominant species (Carex decidua) was significantly faster at near-ambient UVB; root decomposition of this species tended to be lower at increased temperature and interacted with UVB. We found, for the first time in a field experiment that epigeic earthworm density and biomass was 36% decreased by warming but remained unaffected by UVB radiation. Our results show that present-day solar UVB radiation and modest warming can adversely affect ecosystem functioning and engineers of this fen. However, results on plant biomass production also showed that treatment manipulations of co-occurring global change factors can be overridden by the local climatic situation in a given study year. [source] Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairieGLOBAL CHANGE BIOLOGY, Issue 12 2008REBECCA A. SHERRY Abstract Global climate change is expected to result in a greater frequency of extreme weather, which can cause lag effects on aboveground net primary production (ANPP). However, our understanding of lag effects is limited. To explore lag effects following extreme weather, we applied four treatments (control, doubled precipitation, 4 °C warming, and warming plus doubled precipitation) for 1 year in a randomized block design and monitored changes in ecosystem processes for 3 years in an old-field tallgrass prairie in central Oklahoma. Biomass was estimated twice in the pretreatment year, and three times during the treatment and posttreatment years. Total plant biomass was increased by warming in spring of the treatment year and by doubled precipitation in summer. However, double precipitation suppressed fall production. During the following spring, biomass production was significantly suppressed in the formerly warmed plots 2 months after treatments ceased. Nine months after the end of treatments, fall production remained suppressed in double precipitation and warming plus double precipitation treatments. Also, the formerly warmed plots still had a significantly greater proportion of C4 plants, while the warmed plus double precipitation plots retained a high proportion of C3 plants. The lag effects of warming on biomass did not match the temporal patterns of soil nitrogen availability determined by plant root simulator probes, but coincided with warming-induced decreases in available soil moisture in the deepest layers of soil which recovered to the pretreatment pattern approximately 10 months after the treatments ceased. Analyzing the data with an ecosystem model showed that the lagged temporal patterns of effects of warming and precipitation on biomass can be fully explained by warming-induced differences in soil moisture. Thus, both the experimental results and modeling analysis indicate that water availability regulates lag effects of warming on biomass production. [source] Plant diversity positively affects short-term soil carbon storage in experimental grasslandsGLOBAL CHANGE BIOLOGY, Issue 12 2008SIBYLLE STEINBEISS Abstract Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ,The Jena Experiment', a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0,30 cm decreased from 7.3 kg C m,2 in 2002 to 6.9 kg C m,2 in 2004, but had recovered to 7.8 kg C m,2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short-term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log-transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build-up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long-term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation. [source] Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2GLOBAL CHANGE BIOLOGY, Issue 2 2007MICHAEL BOCK Abstract Temperate grasslands contribute about 20% to the global terrestrial carbon (C) budget with sugars contributing 10,50% to this soil C pool. Whether the observed increase of the atmospheric CO2 concentration (pCO2) leads to additional C sequestration into these ecosystems or enhanced mineralization of soil organic matter (SOM) is still unclear. Therefore, the aim of the presented study was to investigate the impact of elevated atmospheric pCO2 on C sequestration and turnover of plant- (arabinose and xylose) and microbially derived (fucose, rhamnose, galactose, mannose) sugars in soil, representing a labile SOM pool. The study was carried out at the Swiss Free Air Carbon Dioxide Enrichment (FACE) experiment near Zurich. For 7 years, Lolium perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ,new' (<7 years) C inputs could be determined by means of compound-specific stable isotope analysis (13C : 12C). Samples were fractionated into clay, silt, fine sand and coarse sand, which yielded relatively stable and labile SOM pools with different turnover rates. Total sugar sequestration into bulk soil after 7 years of exposure to elevated pCO2 was about 28% compared with the control plots. In both ambient and elevated plots, total sugar concentrations in particle size fractions increased in the order sand Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systemsGLOBAL CHANGE BIOLOGY, Issue 4 2005Stephen A. Prior Abstract Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split-plot design replicated three times with two management systems as main plots and two CO2 levels (ambient=375 ,L L,1 and elevated CO2=683 ,L L,1) as split-plots using open-top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum (Sorghum bicolor (L.) Moench.) and soybean (Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)) under no-tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO2, but CO2 effects on weed residue were variable in the conventional system. Elevated CO2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0,5 cm depth increment in the conservation system under CO2 -enriched conditions. Smaller shifts in soil C were noted at greater depths (5,10 and 15,30 cm) because of management or CO2 level. Results suggest that with conservation management in an elevated CO2 environment, greater residue amounts could increase soil C storage as well as increase ground cover. [source] Sex-specific physiological and growth responses to elevated atmospheric CO2 in Silene latifolia PoiretGLOBAL CHANGE BIOLOGY, Issue 4 2003XIANZHONG WANG Abstract Dioecy is found in nearly half of the angiosperm families, but little is known about how rising atmospheric CO2 concentration will affect male and female individuals of dioecious species. We examined gender-specific physiological and growth responses of Silene latifolia Poiret, a widespread dioecious species, to a doubled atmospheric CO2 concentration in environmentally controlled growth chambers. Elevated CO2 significantly increased photosynthesis in both male and female plants and by a similar magnitude. Males and females did not differ in net photosynthetic rate, but females had significantly greater biomass production than males, regardless of CO2 concentrations. Vegetative mass increased by 39% in males and in females, whereas reproductive mass increased by 82% in males and 97% in females at elevated CO2. As a result, proportionately more carbon was allocated to reproduction in male and female plants at elevated CO2. Higher CO2 increased individual seed mass significantly, but had no effect on the number or mass of seeds per female plant. Our results demonstrated that rising atmospheric CO2 will alter the allocation patterns in both male and female S. latifolia Poiret plants by shifting proportionally more photosynthate to reproduction. [source] Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures.GRASS & FORAGE SCIENCE, Issue 2 2006Abstract A mechanistic model, simulating the dynamics of production, structure and digestibility of managed permanent pastures, was developed. Its evaluation consisted of (i) studying model response to a range of grassland communities, cutting frequencies and site characteristics, and (ii) testing the model against experimental data, focusing on biomass accumulation and digestibility during three different cutting cycles, herbage production under a frequent cutting regime, and sward dynamics during the winter. The model realistically predicted the dynamics of biomass, structure and digestibility of herbage for various communities of permanent pastures, in different sites and under different management conditions for upland areas of the Auvergne region in France. The predicted responses to environmental conditions and cutting regimes were close to field observations and experimental results. Although the model successfully predicted the dynamics of average herbage production, it lacked precision in predicting the low biomass production observed in relation to the weather conditions found in a few specific years. The model was able to predict the dynamics of the sward during winter and is, therefore, fit for producing multiple-year simulations. To improve the prediction of variability of biomass production and to predict the medium- to long-term dynamics of permanent pastures, the model could be refined by adding seasonal and multiple-year variation in nitrogen availability and in the proportion of grass functional groups in the grassland community. [source] The effect of small gaps in California annual grassland on above-ground biomass productionGRASS & FORAGE SCIENCE, Issue 4 2001J. S. Fehmi Small gaps and clumped species distributions are common in grasslands. In California annual grasslands, patches of Lolium multiflorum Lam. and Bromus hordeaceus L. are often separated by gaps. These gaps potentially limit the productivity and associated resource use of these grasslands. The effect that differences in spatial aggregation, gap distribution and species mixing on 20-cm-diameter plots has on overall forage production by these two grasses was tested. There were three levels of aggregation: whole plots planted; half planted/half empty; two opposing quarters planted/two empty. Each species was planted in each distribution, and they were combined as mixed, half L. multiflorum/half B. hordeaceus and two quarters L. multiflorum/two quarters B. hordeaceus (nine treatments). Plant aggregation had no significant effect on above-ground production of whole plots, but individual tillers near gaps were significantly larger than others. Plasticity in the growth of individual annual grasses effectively buffered against variation in average productivity resulting from variations in plant distribution. There were significant (P < 0·001) differences in forage production as a result of the species the plots contained. Plots containing only L. multiflorum produced 4053 kg of dry matter (DM) ha,1, B. hordeaceus plots produced 2448 kg of DM ha,1, and plots containing both species produced 4712 kg of DM ha,1. At small scales, spatial distribution was less important than species composition in determining annual grassland productivity. [source] Nutritional quality of semi-arid grassland in western Spain over a 10-year period: changes in chemical composition of grasses, legumes and forbsGRASS & FORAGE SCIENCE, Issue 3 2000Vázquez-de-Aldana From 1987 to 1996, the nutritional quality of the main botanical components (grasses, legumes and forbs) in semi-arid grasslands in the dehesa ecosystem in western Spain was analysed. Herbage samples were collected at the end of spring, in 30 locations, at two different topographic positions (upper and lower slope zones). Herbage mass over 2 cm and proportion of botanical components were estimated and samples were analysed for crude protein, neutral-detergent fibre (NDF), hemicellulose, cellulose, lignin and in vitro dry matter digestibility (DMD). Analysis of variance revealed a significant effect of sampling year on the herbage mass, proportion of botanical components and their nutritional quality. The three botanical groups, grasses, legumes and forbs, followed similar year-to-year trends in their crude protein, cellulose and lignin contents and in vitro DMD. Herbage mass was not significantly related to any meteorological variables, suggesting that interannual variation in biomass production of botanically complex pastures cannot be explained by a single factor. However, annual precipitation was significantly related to the proportion of the botanical group that was dominant at each slope zone: grasses in the lower zone and forbs in the upper zone. In the upper zone, spring precipitation explained part of the interannual variation in the NDF, cellulose, lignin contents and in vitro DMD of the botanical components. [source] Forage and biomass feedstock production from hybrid forage sorghum and sorghum,sudangrass hybridsGRASSLAND SCIENCE, Issue 4 2008Brad Venuto Abstract As the bioenergy industry expands, producers choosing to shift current forage crop production to dedicated biomass crops can benefit from growing lower risk multipurpose crops that maximize management options. Hybrid forage sorghums (HFS) and sorghum,sudangrass hybrids (SSG) are capable of impressive biomass yields and tolerance to environmental stress. Multiple vegetative harvests (ratoon harvests) of sorghum are possible and there are photoperiod-sensitive sorghums that remain vegetative. However, the response of newer HFS and SSG cultivars to harvest management practices designed for forage or cellulosic feedstock production has not been fully investigated in all environments. The objectives of this study were to: (i) determine biomass production and quality characteristics of a genetically diverse range of HFS, SSG and sudangrass cultivars and evaluate their interaction with harvest system; and (ii) provide data to aid selection of sorghum cultivars for both forage and biofuel uses. Mean yield across all entries and years for a single late season harvest was 27.1 Mg ha,1 of dry matter per year. Mean total yield for a first harvest plus a ratoon crop was 25.5 Mg ha,1 of dry matter per year. However, entries varied for yield and interacted with harvest system. Mean caloric value was 16.5 Gj Mg,1 and modest differences were observed among cultivars evaluated. The best performing entry (cv. Tentaka) yielded 40.3 Mg ha,1 of dry matter for a single late season harvest, demonstrating the biomass potential of existing sorghum cultivars, specifically those possessing photoperiod- and/or thermosensitive genotypes. [source] Cadmium phytoextraction capacity in eight C3 herbage grass speciesGRASSLAND SCIENCE, Issue 1 2008Shamima Sabreen Abstract Grasses are excellent candidates for phytoremediation because of their high biomass production, high adaptability and low management cost. This study assesses interspecific variation of cadmium (Cd) phytoextraction capabilities in eight C3 grass species. Populations of 30-day-old C3 grass species , namely, Agrostis alba, Anthoxanthum odoratum, Dactylis glomerata, Festuca arundinacea, Festuca pratensis, Lolium multiflorum, Lolium perenne and Poa pratensis, were grown hydroponically for 15 days with different concentrations of Cd (0, 5, 10 and 50 µM). For each species, shoot biomass, the proportion of growth inhibition (GI, %), shoot Cd concentration and accumulation, shoot nutrient uptake, and the proportion of uptake inhibition (UI, %) of nutrient minerals were evaluated. Effects of Cd application included stunted growth. The GI increased from 5% to 70% with an increase in Cd concentrations. For all Cd treatments, L. multiflorum showed the highest shoot dry biomass. Shoot Cd concentrations negatively affected mineral nutrient uptake. The highest Cd treatment caused UI of various elements of 37,95%. Under 50-µM Cd treatment, Cd accumulation varied by 20 times among species, and L. multiflorum showed the highest Cd accumulation (116.46 µg plant,1). Our results indicate that L. multiflorum exhibited high degrees of both Cd tolerance and Cd phytoextraction capacity among grass species. [source] Floristic composition and plant biomass production of steppe communities in the vicinity of Kharkiv, UkraineGRASSLAND SCIENCE, Issue 3 2005Kiyokazu Kawada Abstract In grassland in the vicinity of Kharkiv, Ukraine, we determined the floristic composition of the plant communities, v -values of the species and above-ground plant biomass. The plant communities in Kharkiv were dominated by Stipa capillata L., Medicago romanica Prodan, Inula ensifolia L. and Poa angustifolia L. There were 46 species in eight 1-m2 quadrates and the above-ground plant biomass was 245 g m,2 in the Stipa capillata stand. In the Medicago romanica stand, the number of species and above-ground plant biomass were 37 per 10 quadrates of 1 m2 and 195 g m,2, respectively. The numbers of species in the stands were 40 in Poa angustifolia and 45 in Inula ensifolia. The plant biomass of the Poa angustifoia stand was 380 g m,2. These values were similar to those from Inner Mongolia. The species diversity of the stand (H) was calculated as: H = ,,pi log2 pi. The species diversity of the two stands was 2.98 for the Stipa capillata stand and 2.66 in the Medicago romanica stand. The stand changed by various human impacts, such as grazing and cultivation. Plantago schwarzenbergiana Schur. seemed to become established after the exposure of Stipa capillata stands to grazing, while Inula ensifolia stands became established in an abandoned field. The species composition in Kharkiv was different from that of Inner Mongolia, though the genus of plants was similar. [source] Humidity parameters from temperature: test of a simple methodology for European conditionsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2008Yvonne Andersson-Sköld Abstract Atmospheric water content is important for local and regional climate, and for chemical processes of soluble and solute species in the atmosphere. Further, vapour pressure deficit (D) is one of the key controls on the opening of stomata in plants and is thus an important force for evapotransporation, plant respiration and biomass production and for the uptake of harmful pollutants such as ozone through the stomata. Most meteorological stations typically measure both temperature and relative humidity (RH). However, even if recorded at finer time resolution, it is usually the daily or often monthly means of RH which are published in climate reports. Unfortunately, such data cannot be used to obtain the changes in RH or vapour pressure deficit over the day, as this depends strongly on the diurnal temperature variation during the day and not upon the mean temperature. Although RH typically changes significantly over the day, the ambient vapour pressure is often remarkably constant. Here a simple method to estimate diurnal vapour pressure is evaluated, based upon an assumed constant vapour pressure, and that recorded minimum temperatures approximate dew-point temperatures. With a knowledge of only temperature, we will show that day to day estimates of vapour pressure, humidity and especially D, can be made with reasonable accuracy. This methodology is tested using meteorological data from 32 sites covering a range of locations in Europe. Such a simple methodology may be used to extract approximate diurnal curves of vapour pressures from published meteorological data which contains only minimum temperatures for each day, or where humidity data are not available. Copyright © 2007 Royal Meteorological Society [source] Root Distribution of Drought-Resistant Peanut Genotypes in Response to DroughtJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2008P. Songsri Abstract The ability of a plant to modify its root distribution to exploit deeper stored soil water may be an important mechanism to avoid drought. This study aimed at assessing root distributions, variations in root length density (RLD) and percentage of root distribution, and the relevance of root traits for yield of drought-resistant peanut genotypes under different available soil water levels. The experiment was conducted in the dry season during the years 2003/04 and 2004/05. Eleven peanut genotypes (ICGV 98300, ICGV 98303, ICGV 98305, ICGV 98308, ICGV 98324, ICGV 98330, ICGV 98348, ICGV 98353, Tainan 9, KK 60-3 and Tifton-8) and three soil moisture levels [field capacity (FC), 2/3 available soil water (AW) and 1/3 AW] were laid out in a split-plot design with four replications. Roots were sampled by a core sampler at 37, 67 and 97 days after sowing (DAS). Root length was determined by a scanner and the WINRHIZO Pro 2004a software. RLD was calculated as the ratio of root length (cm) and soil volume (cm3). Graphical illustration of root distribution was constructed by merging RLD in the first and second soil layers (0,40 cm) as upper roots and pooling RLD at the third, fourth and fifth layers (40,100 cm) as lower roots. Pod yield, biomass and harvest index (HI) were recorded at harvest. A drought tolerance index (DTI) was calculated for each parameter as the ratio of the parameter under stress treatment to that under well-watered conditions. Variations in RLD in 40 to 100 cm layer (RLD40 to 100 cm) were found under well-watered conditions, and the peanut genotypes could be readily identified as high, intermediate and low for this trait. Changes in RLD in the 40 to 100 cm soil layer were found at 2/3 AW and were more evident at 1/3 AW. ICGV 98300, ICGV 98303, ICGV 98305, ICGV 98308 and KK 60-3 were classified as drought responsive as they increased RLD in the deeper subsoil level in response to drought. In general, RLD under drought conditions was not related to biomass production. The ability to maintain the percentage of RLD (DTI for %RLD) was related to pod yield, DTI for pod yield and DTI for HI. ICGV 98300, ICGV 98303, ICGV 98305 exhibited high DTI (RLD40 to 100 cm) which may explain their high pod yield, DTI (PY) and DTI (HI). Based on these observations we classified them as drought-avoiding genotypes. [source] Effects of Grazing on Bituminaria bituminosa (L) Stirton: A Potential Forage Crop in Mediterranean GrasslandsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2006M. Sternberg Abstract Plant traits of Bituminaria bituminosa, as affected by different intensities of cattle grazing, were studied in a Mediterranean grassland in Israel. B. bituminosa is a widespread Mediterranean perennial legume species that may potentially serve as a fodder crop in Mediterranean grasslands. The aims of the present study were: (i) to evaluate the responses of B. bituminosa to different cattle grazing intensities; (ii) to study functional traits associated with grazing tolerance; and (iii) to evaluate its potential as an alternative forage crop in the region. A total of 100 B. bituminosa plants were monitored in field conditions. During the growing season each individual was sampled five times and the following plant traits were monitored each time: (i) aboveground biomass production, (ii) plant height, (iii) specific leaf area (SLA), (iv) number of flowers, (v) seed mass and size, (vi) tannin concentration in leaves, (vii) total nitrogen in leaves, (viii) fibre concentration in leaves (Neutral Detergent Fiber), and (ix) in vitro dry matter digestibility. The results showed that grazing intensity and history of grazing affected B. bituminosa performance. Plant biomass, height, and flower and seed production were all reduced when plants were exposed to cattle grazing. However, under moderate grazing intensities, its plant cover remained relatively stable indicating a potential tolerance under this stocking rate. The nutritious characteristics of B. bituminosa leaves were good, and the condensed tannins concentration found indicated favourable conditions for digestion. Moreover, the in vitro digestibility studies indicated relatively high values (46,51 %) of digestion. B. bituminosa may be considered as a potential crop for cattle feeding in Mediterranean grasslands. Growing this plant in dense stands in rotational paddocks may provide alternative sources of natural fodder protein, reducing the potential costs of artificial feed supplements. [source] Seedling Growth of Agronomic Crops in Crude Oil Contaminated SoilJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2006I. Issoufi Abstract Phytoremediation of hydrocarbon-contaminated soil shows promise as a low-cost alternative to most remediation methods. This study evaluated seedling growth of six crop species in crude oil contaminated soils. The experiments were conducted in a greenhouse. Weathered crude oil was added to an Ipava silt loam soil at the rate of 0 (control), 10, 50 and 100 g of crude oil kg,1 of soil, which was then placed into pots. Irrigation was used to maintain soil moisture at approximately field capacity. Five seeds of Zea mays, Meticago sativa, Lolium perenne, Triticum aestivum, Glycine max or Vicia villosa were sown per pot. The experimental design was completely randomized with five replications per treatment. Germination and seedling height data were recorded on day 7, 14, 21 and 28. Plants were harvested on day 28, separated into shoots and roots and dried to measure biomass. Analysis of variance was used to determine treatment significance. Significant treatment mean values were separated using Tukey's Honestly Significant Difference Test. Based upon percent emergence and plant biomass production in contaminated soil, Z. mays and G. max seedlings show the greatest potential to enhance remediation. [source] Maize Yields as Affected by Short- and Long-Term Improved Fallows: A Comparative Analysis in the Asian Humid TropicsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2005R. Schelbert Abstract Improved short- or long-term fallows are considered suitable low external input technologies for maintaining productivity and sustainability of tropical smallholder upland cropping units, although comparisons on the benefits of this technology are not widely reported. A field study evaluated the impact of improved short (6 months) and long-term fallow (18 months) using Crotalaria juncea and Tithonia diversifolia, in relation to a natural fallow of the same durations, on the productivity of maize (Zea mays), the most important upland cereal in tropical Asia, over a minor season. The use of improved fallows, especially Tithonia, increased maize yields over the Crotalaria or natural fallow. While the overall yields of maize after a long fallow were greater, the beneficial impact of the green manures was significantly higher in the short fallows. The causal factors for this trend, including biomass production of the improved fallows and possible impact on soils, along with the greater benefits of short-term fallows for increasing maize yields in the tropics due to lower requirements of unproductive time are presented. [source]
| |