Biological Media (biological + media)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and Stability in Biological Media of 1H -Imidazole-1-carboxylates of ROS203, an Antagonist of the Histamine H3 Receptor

CHEMISTRY & BIODIVERSITY, Issue 1 2008
Mirko Rivara
Abstract A series of carbamate derivatives of the H3 antagonist ROS203 (1) were prepared, and their lipophilicity and steric hindrance were modulated by introducing linear or branched alkyl chains of various lengths. In vitro stability studies were conducted to evaluate how structural modulations affect the intrinsic reactivity of the carbamoyl moiety and its recognition by metabolic enzymes. Linear alkyl carbamates were the most susceptible to enzymatic hydrolysis, with bioconversion rates being higher in rat liver and plasma. Chain ramification significantly enhanced the enzymatic stability of the set, with two derivatives (1g and 1h) being more stable by a factor of 8,40 than the ethyl carbamate 1a. Incubation with bovine serum albumin (BSA) showed a protective role of proteins on chemical and porcine-liver esterase (PLE)-catalyzed hydrolysis. Ex vivo binding data after i.v. administration of 1h revealed prolonged displacement of the labeled ligand [3H]-(R)- , -methylhistamine ([3H]RAMHA) from rat-brain cortical membranes, when compared to 1. However, the high rates of bioconversion in liver, as well as the chemical instability of 1h, suggest that further work is needed to optimize the enzymatic and chemical stability of these compounds. [source]


Electrochemical Nitric Oxide Sensors for Biological Samples , Principle, Selected Examples and Applications

ELECTROANALYSIS, Issue 1 2003
Fethi Bedioui
Abstract The discoveries made in the 1980s that NO could be synthesized by mammalian cells and could act as physiological messenger and cytotoxic agent had elevated the importance of its detection. The numerous properties of NO, that enable it to carry out its diverse functions, also present considerable problems when attempting its detection and quantification in biological systems. Indeed, its total free concentration in physiological conditions has been established to be in nanomolar range. Thus, detection of nitric oxide remains a challenge, pointing out the difficult dual requirements for specificity and sensitivity. Exception made for the electrochemical techniques, most of the approaches (namely UV-visible spectroscopy, fluorescence, electron paramagnetic resonance spectroscopy) use indirect methods for estimating endogenous NO, relying on measurements of secondary species such as nitrite and nitrate or NO-adducts. They also suffer from allowing only ex situ measurements. So, the only strategies that allow a direct and in vivo detection of NO are those based on the use of ultramicroelectrodes. The reality is that surface electrode modification is needed to make the ultramicroelectrode material selective for NO. Therefore, the design of modified electrode surfaces using organized layers is very attractive and provides the ideal strategy. This review addresses a global description of the various approaches that have involved chemically modified microelectrodes specially designed for the electrochemical detection of NO in biological media. Selected significant examples of applications in biological tissues are also reported in order to highlight the importance of this approach in having new insights into the modulatory role of NO in physiology and pathophysiology. [source]


Optimization of the Azobenzene Scaffold for Reductive Cleavage by Dithionite; Development of an Azobenzene Cleavable Linker for Proteomic Applications

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 23 2010
Geoffray Leriche
Abstract In this paper we conducted an extensive reactivity study to determine the key structural features that favour the dithionite-triggered reductive cleavage of the azo,arene group. Our stepwise investigation allowed identification of a highly reactive azo,arene structure 25 bearing a carboxylic acid at the ortho position of the electron-poor arene and an ortho - O -alkyl-resorcinol as the electron-rich arene. Based on this 2-(2,-alkoxy-4,-hydroxyphenylazo)benzoic acid (HAZA) scaffold, the orthogonally protected difunctional azo,arene cleavable linker 26 was designed and synthesized. Selective linker deprotection and derivatization was performed by introducing an alkyne reactive group and a biotin affinity tag. This optimized azo,arene cleavable linker led to a total cleavage in less than 10 s with only 1 mM dithionite. Similar results were obtained in biological media. [source]


DNA Detection: Intercalating Dye Harnessed Cationic Conjugated Polymer for Real-Time Naked-Eye Recognition of Double-Stranded DNA in Serum (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2009
Mater.
On page 1371, Liu Bin and Pu Kan-Yi demonstrate multicolor detection of double-stranded DNA in biological media using an intercalating-dye-harnessed cationic conjugated polymer. As demonstrated in the cover image, the intercalating-dye-harnessed polymer emits blue fluorescence both in the absence and presence of single-stranded DNA in serum-containing solution, while its fluorescence gradually turns from blue to dark yellow with increasing double-stranded DNA concentration. [source]


Intercalating Dye Harnessed Cationic Conjugated Polymer for Real-Time Naked-Eye Recognition of Double-Stranded DNA in Serum

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2009
Kan-Yi Pu
Abstract Thiazole orange (TO), an intercalating dye, is integrated into cationic poly(fluorene- alt -phenylene) (PFP) to develop a macromolecular multicolor probe (PFPTO) for double-stranded DNA (dsDNA) detection. This polymer design not only takes advantage of the high affinity between TO and dsDNA to realize dsDNA recognition in biological media, but also brings into play the light-harvesting feature of conjugated polymers to amplify the signal output of TO in situ. PFPTO differentiates dsDNA from single-stranded DNA (ssDNA) more effectively upon excitation of the conjugated backbone relative to that upon direct excitation of TO as a result of efficient fluorescence resonance energy transfer from the polymer backbone to the intercalated TO. In the presence of dsDNA, energy transfer within PFPTO is more efficient as compared to that for free TO/PFP system, which leads to better dsDNA discriminability for PFPTO in contrast to that for TO/PFP. The distinguishable fluorescent color for PFPTO solutions in the presence of dsDNA allows naked-eye detection of dsDNA with the assistance of a hand-held UV lamp. The significant advantage of this macromolecular fluorescent probe is that naked-eye detection of label-free dsDNA can be performed in biological media in real-time. [source]


Water Stability and Luminescence of Lanthanide Complexes of Tripodal Ligands Derived from 1,4,7-Triazacyclononane: Pyridinecarboxamide versus Pyridinecarboxylate Donors

HELVETICA CHIMICA ACTA, Issue 11 2009
Grégory Nocton
Abstract A series of europium(III) and terbium(III) complexes of three 1,4,7-triazacyclononane-based pyridine containing ligands were synthesized. The three ligands differ from each other in the substitution of the pyridine pendant arm, namely they have a carboxylic acid, an ethylamide, or an ethyl ester substituent, i.e., these ligands are 6,6,,6,-[1,4,7-triazacyclononane-1,4,7-triyltris(methylene)]tris[pyridine-2-carboxylic acid] (H3tpatcn), -tris[pyridine-2-carboxamide] (tpatcnam), and -tris[pyridine-2-carboxylic acid] triethyl ester (tpatcnes) respectively. The quantum yields of both the europium(III) and terbium(III) emission, upon ligand excitation, were highly dependent upon ligand substitution, with a ca. 50-fold decrease for the carboxamide derivative in comparison to the picolinic acid (=pyridine-2-carboxylic acid) based ligand. Detailed analysis of the radiative rate constants and the energy of the triplet states for the three ligand systems revealed a less efficient energy transfer for the carboxamide-based systems. The stability of the three ligand systems in H2O was investigated. Although hydrolysis of the ethyl ester occurred in H2O for the [Ln(tpatcnes)](OTf)3 complexes, the tripositive [Ln(tpatcnam)](OTf)3 complexes and the neutral [Ln(tpatcn)] complexes showed high stability in H2O which makes them suitable for application in biological media. The [Tb(tpatcn)] complex formed easily in H2O and was thermodynamically stable at physiological pH (pTb 14.9), whereas the [Ln(tpatcnam)](OTf)3 complexes showed a very high kinetic stability in H2O, and once prepared in organic solvents, remained undissociated in H2O. [source]


Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: A comparative study with the pure metals and stainless steel

INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 3 2010
Klara Midander
Abstract The European product safety legislation, REACH, requires that companies that manufacture, import, or use chemicals demonstrate safe use and high level of protection of their products placed on the market from a human health and environmental perspective. This process involves detailed assessment of potential hazards for various toxicity endpoints induced by the use of chemicals with a minimum use of animal testing. Such an assessment requires thorough understanding of relevant exposure scenarios including material characteristics and intrinsic properties and how, for instance, physical and chemical properties change from the manufacturing phase, throughout use, to final disposal. Temporary or permanent adverse health effects induced by particles depend either on their shape or physical characteristics, and/or on chemical interactions with the particle surface upon human exposure. Potential adverse effects caused by the exposure of metal particles through the gastrointestinal system, the pulmonary system, or the skin, and their subsequent potential for particle dissolution and metal release in contact with biological media, show significant gaps of knowledge. In vitro bioaccessibility testing at conditions of relevance for different exposure scenarios, combined with the generation of a detailed understanding of intrinsic material properties and surface characteristics, are in this context a useful approach to address aspects of relevance for accurate risk and hazard assessment of chemicals, including metals and alloys and to avoid the use of in vivo testing. Alloys are essential engineering materials in all kinds of applications in society, but their potential adverse effects on human health and the environment are very seldom assessed. Alloys are treated in REACH as mixtures of their constituent elements, an approach highly inappropriate because intrinsic properties of alloys generally are totally different compared with their pure metal components. A large research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents. Integr Environ Assess Manag 2010;6:441,455. © 2009 SETAC [source]


Using Biomonitoring Equivalents to interpret human biomonitoring data in a public health risk context

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2009
Sean M. Hays
Abstract Increasingly sensitive analytical tools allow measurement of trace concentrations of chemicals in human biological media in persons from the general population. Such data are being generated by biomonitoring programs conducted by the US Centers for Disease Control and other researchers. However, few screening tools are available for interpretation of such data in a health risk assessment context. This review describes the concept and implementation of Biomonitoring Equivalents (BEs), estimates of the concentration of a chemical or metabolite in a biological medium that is consistent with an existing exposure guidance value such as a tolerable daily intake or reference dose. The BE approach integrates available pharmacokinetic data to convert an existing exposure guidance value into an equivalent concentration in a biological medium. Key concepts regarding the derivation and communication of BE values resulting from an expert workshop held in 2007 are summarized. BE derivations for four case study chemicals (toluene, 2,4-dichlorophenoxyacetic acid, cadmium and acrylamide) are presented, and the interpretation of biomonitoring data for these chemicals is presented using the BE values. These case studies demonstrate that a range of pharmacokinetic data and approaches can be used to derive BE values; fully developed physiologically based pharmacokinetic models, while useful, are not required. The resulting screening level evaluation can be used to classify these compounds into relative categories of low, medium and high priority for risk assessment follow-up. Future challenges related to the derivation and use of BE values as tools in risk management are discussed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Characterization of prostate-specific antigen binding peptides selected by phage display technology

JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2006
Catherine Ferrieu-Weisbuch
Abstract Prostate-specific antigen (PSA) is an important marker for the diagnosis and management of prostate cancer. Free PSA has been shown to be more extensively cleaved in sera from benign prostatic hyperplasia patients than in sera from prostate cancer patients. Moreover, the presence of enzymatically activatable PSA was characterized previously in sera from patients with prostate cancer by the use of the specific anti-free PSA monoclonal antibody (mAb) 5D3D11. As an attempt to obtain ligands for the specific recognition of different PSA forms including active PSA, phage-displayed linear and cyclic peptide libraries were screened with PSA coated directly into microplate wells or presented by two different anti-total PSA mAbs. Four different phage clones were selected for their ability to recognize PSA and the inserted peptides were produced as synthetic peptides. These peptides were found to capture and to detect specifically free PSA, even in complex biological media such as sera or tumour cell culture supernatants. Alanine scanning of peptide sequences showed the involvement of aromatic and hydrophobic residues in the interaction of the peptides with PSA whereas Spotscan analysis of overlapping peptides covering the PSA sequence identified a peptide binding to the kallikrein loop at residues 82,87, suggesting that the peptides could recognize a non-clipped form of PSA. Moreover, the PSA-specific peptides enhance the enzymatic activity of PSA immobilized into microplate wells whereas the capture of PSA by the peptides inhibited totally its enzymatic activity while the peptide binding to PSA had no effect in solution. These PSA-specific peptides could be potential tools for the recognition of PSA forms more specifically associated to prostate cancer. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Methyl esters of N -(dicyclohexyl)acetyl-piperidine-4-(benzylidene-4-carboxylic acids) as drugs and prodrugs: A new strategy for dual inhibition of 5,-reductase type 1 and type 2

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2005
Martina Streiber
Abstract Steroid 5,-reductase (5,R) inhibitory potency of three N -(dicyclohexyl)acetyl-piperidine-4-(benzylidene-4-carboxylic acids) and their corresponding methyl esters was monitored for type 2 isoenzyme in a benign prostatic hyperplasia cell free preparation and for type 1 isoenzyme in DU145 cells and in a cell free assay. The hydrolytic stability of the esters and their bioconversion to the corresponding acids was assessed in aqueous buffered solution (pH 7.4) and in selected biological media having measurable esterase activities. The carboxylic acids 1, 2, and 3 with high type 2 inhibitory potencies displayed only little type 1 inhibition. The esters 1a, 2a, and 3a, originally designed as prodrugs to enhance cell permeation, proved to be potent type 1 inhibitors and are therefore acting as drugs themselves. They are stable in buffered salt solution (pH 7.4), Caco-2 cells, and human plasma, whereas all esters are cleaved into the corresponding acids in benign prostatic hyperplasia tissue homogenate. Methyl esters, applied as hydrolytically stable precursor drugs to facilitate cell permeation, will yield the corresponding carboxylic acids as type 2 inhibitors after hydrolysis in the target organ. The esters themselves,stable in human plasma and Caco-2 cells,are acting as potent drugs toward 5,R type 1. Thus, dual inhibition of 5,R type 1 and type 2 can be achieved by applying a single parent compound. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:473,480, 2005 [source]


Biostability and pharmacokinetics of LJP 920, an octameric Gal (,1,3) Gal conjugate for the inhibition of xenotransplantation rejection

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2001
Lee Jia
Antibodies to an ,-galactosyl saccharide structure present in human serum are associated with hyperacute rejection and delayed xenograft rejection after pig-to-primate xenotransplantation. To overcome this major barrier to the xenotransplantation, LJP 920, a galactosyl ,1,3 galactose (Gal (,1,3) Gal) coupled to a non-immunogenic platform at a valency of eight Gal (,1,3) Gal molecules/platform, was synthesized to clear circulating antibodies and to inhibit their production by B cells that produce these antibodies. Herein we report on the stability of LJP 920 in biological media and its pharmacokinetic profile. Incubation of LJP 920 with mouse serum or liver microsomes at 37°C for 2 days showed no indication of degradation of the conjugate as detected by a reversed-phase HPLC method, indicating that the conjugate is not subject to enzymatic metabolism. After intravenous administration of LJP 920 to mice at the doses of 20 and 100 mg kg,1, LJP 920 serum concentration decreased rapidly, showing a biphasic pattern, with a distribution half-life of 3 min and an elimination half-life of more than 30 min, respectively. The serum-to-erythrocyte concentration ratio of LJP 920 was 33- and 36-fold excess at 0.5 and 5 min, respectively, after intravenous administration (100 mg kg,1). Both Cmax and AUC values increased in a dose-proportional manner. LJP 920 displayed a great distribution to well-perfused tissues. It was eliminated mainly through renal excretion in the unchanged form, which accounted for 23% of the total amount within 8 h of dosing. [source]


Protective effect of melatonin against oxidative stress induced by ligature of extra-hepatic biliary duct in rats: comparison with the effect of S-adenosyl- l -methionine

JOURNAL OF PINEAL RESEARCH, Issue 3 2000
Pedro Montilla López
In the present research, we studied the effect of the administration of melatonin or S-adenosyl- l -methionine (S-AMe) on oxidative stress and hepatic cholestasis produced by double ligature of the extra-hepatic biliary duct (LBD) in adult male Wistar rats. Hepatic oxidative stress was evaluated by the changes in the amount of lipid peroxides and by the reduced glutathione content (GSH) in lysates of erythrocytes and homogenates of hepatic tissue. The severity of the cholestasis and hepatic injury were determined by the changes in the plasma enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), g-glutamyl-transpeptidase (GGT), and levels of albumin, total bilirubin (TB) and direct bilirubin (DB). Either melatonin or S-AMe were administered daily 3 days before LBD, and for 10 days after biliary obstruction. LDB caused highly significant increases in plasma enzyme activities and in bilirubin and lipid peroxides levels in erythrocytes and hepatic tissue. At the same time, this procedure produced a notable decrease in the GSH pools in these biological media. Both melatonin and S-AMe administration were effective as antioxidants and hepatoprotective substances, although the protective effects of melatonin were superior; it prevented the GSH decrease and reduced significantly the increases in enzyme activities and lipid peroxidation products produced by biliary ligature. S-AMe did not modify the increased GGT activity nor did it decrease greatly the TB levels (43% melatonin vs. 14% S-AMe). However, S-AMe was effective in preventing the loss of GSH in erythrocytes and hepatic tissue, as was melatonin. The obtained data permit the following conclusions. First, the LDB models cause marked hepatic oxidative stress. Second, the participation of free radicals of oxygen in the pathogenecity and severity of cholestasis produced by the acute obstruction of the extra-hepatic biliary duct is likely. Third, the results confirm the function of S-AMe as an antioxidant and hepatoprotector. Finally, melatonin is far more potent and provides superior protection as compared to S-AMe. Considering the decrease in oxidative stress and the intensity of cholestasis, these findings have interesting clinical implications for melatonin as a possible therapeutic agent in biliary cholestasis and parenchymatous liver injury. [source]


Atypical polysaccharide physical gels: structure/property relationships

MACROMOLECULAR SYMPOSIA, Issue 1 2003
Alexandra Clayer
Abstract Chitin and chitosan are polysaccharides produced by the biomass. They have the same general chemical structure and constitute the series of linear copolymers of linked ,, (1->4) glucosamine and N-actylglucosamine. We studied the possibility of forming physical gels with all the terms of this series, whatever the proportion of the two kinds of residues included in the polymer chains. We show that physical gelation is still possible through a percolating process when certain important conditions are met. Initially the concentration in polymer must be above C*; a critical value of the balance between hydrophobic and hydrophilic interactions must be achieved and gelation must occur simultaneously everywhere in the medium. These conditions were observed in several situations allowing the formation of different kinds of gels at all values of DA. In view of the rare bio-active properties of chitin and chitosan, these gels were tested for living tissue regeneration and constitute very interesting examples in illustration of our concept of decoys for biological media. [source]


Charge density and electrostatic potential analyses in paracetamol

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2009
Nouzha Bouhmaida
The electron density of monoclinic paracetamol was derived from high-resolution X-ray diffraction at 100,K. The Hansen,Coppens multipole model was used to refine the experimental electron density. The topologies of the electron density and the electrostatic potential were carefully analyzed. Numerical and analytical procedures were used to derive the charges integrated over the atomic basins. The highest charge magnitude (,1.2,e) was found for the N atom of the paracetamol molecule, which is in agreement with the observed nucleophilic attack occurring in the biological media. The electric field generated by the paracetamol molecule was used to calculate the atomic charges using the divergence theorem. This was simultaneously applied to estimate the total electrostatic force exerted on each atom of the molecule by using the Maxwell stress tensor. The interaction electrostatic energy of dimers of paracetamol in the crystal lattice was also estimated. [source]


18O-Labeled lipid hydroperoxides and HPLC coupled to mass spectrometry as valuable tools for studying the generation of singlet oxygen in biological system

BIOFACTORS, Issue 1-4 2004
Sayuri Miyamoto
Abstract Decomposition of lipid hydroperoxides (LOOH) is known to generate toxic products capable to induce tissue injury. We have recently confirmed that decomposition of LOOH into peroxyl radicals is a potential source of singlet oxygen (1O2) in biological system. Using 18O-labeled linoleic acid hydroperoxide (LA18O18OH) in the presence of Ce4+ or Fe+2, we observed the formation of 18O-labeled 1O2 (18[1O2]) by chemical trapping of 1O2 with 9,10-diphenylanthracene (DPA) and detecting the corresponding 18O-labeled DPA endoperoxide (DPA18O18O) by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS). 18O-Labeled alcohol and ketone were also detected providing further evidence for the generation of 1O2by the Russell mechanism. Similarly the reaction of LA18O18OH with peroxynitrite also generated18[1O2]. In conclusion, these results indicates that the use of 18O-labeled LOOH associated with HPLC-MS/MS can be an useful tool to clarify mechanistic features involved in the reaction of LOOH in biological media. [source]