Biological Clock (biological + clock)

Distribution by Scientific Domains


Selected Abstracts


Alcohol Consumption and the Body's Biological Clock

ALCOHOLISM, Issue 8 2005
Rainer Spanagel
This review summarizes new findings on the bidirectional interactions between alcohol and the clock genes, underlying the generation of circadian rhythmicity. At the behavioral level, both adult and perinatal ethanol treatments alter the free-running period and light response of the circadian clock in rodents; genetic ethanol preference in alcohol-preferring rat lines is also associated with alterations in circadian pacemaker function. At the neuronal level, it has been shown that ethanol consumption alters the circadian expression patterns of period (per) genes in various brain regions, including the suprachiasmatic nucleus. Notably, circadian functions of ,-endorphin,containing neurons that participate in the control of alcohol reinforcement become disturbed after chronic alcohol intake. In turn, per2 gene activity regulates alcohol intake through its effects on the glutamatergic system through glutamate reuptake mechanisms and thereby may affect a variety of physiological processes that are governed by our internal clock. In summary, a new pathologic chain has been identified that contributes to the negative health consequences of chronic alcohol intake. Thus, chronic alcohol intake alters the expression of per genes, and, as a consequence, a variety of neurochemical and neuroendocrine functions become disturbed. Further steps in this pathologic chain are alterations in physiological and immune functions that are under circadian control, and, as a final consequence, addictive behavior might be triggered or sustained by this cascade. [source]


Role of orexins in the hypothalamic-pituitary-ovarian relationships

ACTA PHYSIOLOGICA, Issue 3 2010
P. Silveyra
Abstract Appropriate nutritional and vigilance states are needed for reproduction. In previous works, we described the influence of the hormonal milieu of proestrus on the orexinergic system and we found that orexin receptor 1 expression in the hypothalamus, but not other neural areas, and the adenohypophysis was under the influence of oestradiol and the time of the day. Information from the sexual hormonal milieu of proestrous afternoon impacts on various components of the orexinergic system and alertness on this particular night of proestrus would be of importance for successful reproduction. In this review, we summarize the available experimental data supporting the participation of orexins in the hypothalamic-pituitary-ovarian relationships. All together, these results suggest a role of the orexinergic system as an integrative link among vital functions such as reproduction, food intake, alertness and the inner biological clock. [source]


Microhabitat and rhythmic behavior of tiger beetle Callytron yuasai okinawense larvae in a mangrove forest in Japan

ENTOMOLOGICAL SCIENCE, Issue 3 2007
Aya SATOH
Abstract Mangrove forests are regularly flooded by tides at intervals of approximately 12.4 h (tidal rhythm). Larvae of the tiger beetle Callytron yuasai okinawense in a mangrove forest made shallow burrows in mounds up to 1 m in height constructed by the mud lobster Thalassina anomala. No larval burrows were observed on the forest floor, which was very muddy even during low tide. Some larvae plugged the burrow openings before they were submerged at high tide. The mean interval between consecutive burrow plugging events was 12.37 h, which is similar to the period of tidal cycles. Nine out of 30 larvae plugged the burrow openings even when the burrows did not become submerged. Plugging behavior may be governed by an endogenous biological clock, or may be a response to exogenous information about tidal level (e.g. moisture seeping through the ground). [source]


The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
David J. Cutler
Abstract Expression of coherent and rhythmic circadian (, 24 h) variation of behaviour, metabolism and other physiological processes in mammals is governed by a dominant biological clock located in the hypothalamic suprachiasmatic nuclei (SCN). Photic entrainment of the SCN circadian clock is mediated, in part, by vasoactive intestinal polypeptide (VIP) acting through the VPAC2 receptor. Here we used mice lacking the VPAC2 receptor (Vipr2,/,) to examine the contribution of this receptor to the electrophysiological actions of VIP on SCN neurons, and to the generation of SCN electrical firing rate rhythms SCN in vitro. Compared with wild-type controls, fewer SCN cells from Vipr2,/, mice responded to VIP and the VPAC2 receptor-selective agonist Ro 25-1553. By contrast, similar proportions of Vipr2,/, and wild-type SCN cells responded to gastrin-releasing peptide, arginine vasopressin or N -methyl- d -aspartate. Moreover, VIP-evoked responses from control SCN neurons were attenuated by the selective VPAC2 receptor antagonist PG 99-465. In firing rate rhythm experiments, the midday peak in activity observed in control SCN cells was lost in Vipr2,/, mice. The loss of electrical activity rhythm in Vipr2,/, mice was mimicked in control SCN slices by chronic treatment with PG 99-465. These results demonstrate that the VPAC2 receptor is necessary for the major part of the electrophysiological actions of VIP on SCN cells in vitro, and is of fundamental importance for the rhythmic and coherent expression of circadian rhythms governed by the SCN clock. These findings suggest a novel role of VPAC2 receptor signalling, and of cell-to-cell communication in general, in the maintenance of core clock function in mammals, impacting on the cellular physiology of SCN neurons. [source]


Mitochondrial Oxidative Stress Plays a Key Role in Aging and Apoptosis

IUBMB LIFE, Issue 5 2000
Juan Sastre
Abstract Harman first suggested in 1972 that mitochondria might be the biological clock in aging, noting that the rate of oxygen consumption should determine the rate of accumulation of mitochondrial damage produced by free radical reactions. Later in 1980 Miquel and coworkers proposed the mitochondrial theory of cell aging. Mitochondria from postmitotic cells use O2 at a high rate, hence releasing oxygen radicals that exceed the cellular antioxidant defences. The key role of mitochondria in cell aging has been outlined by the degeneration induced in cells microinjected with mitochondria isolated from fibroblasts of old rats, especially by the inverse relationship reported between the rate of mitochondrial production of hydroperoxide and the maximum life span of species. An important change in mitochondrial lipid composition is the age-related decrease found in cardiolipin content. The concurrent enhancement of lipid peroxidation and oxidative modification of proteins in mitochondria further increases mutations and oxidative damage to mitochondrial DNA (mtDNA) in the aging process. The respiratory enzymes containing the defective mtDNA-encoded protein subunits may increase the production of reactive oxygen species, which in turn would aggravate the oxidative damage to mitochondria. Moreover, superoxide radicals produced during mitochondrial respiration react with nitric oxide inside mitochondria to yield damaging peroxynitrite. Treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E, or the Ginkgo biloba extract EGb 761, protects against the ageassociated oxidative damage to mtDNA and the oxidation of mitochondrial glutathione. Moreover, the EGb 761 extract also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver. [source]


Diurnal Change of Thyroid-Stimulating Hormone mRNA Expression in the Rat Pars Tuberalis

JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2007
S. Aizawa
Thyroid-stimulating hormone (TSH)-producing cells (TSH cells), which account for a large fraction of the cells in the rat pars tuberalis (PT), have been found to express MT1 melatonin receptor and mammalian clock genes at high densities. Although these findings suggest that TSH production in the rat PT is regulated by melatonin and/or the biological clock, there have been no studies focusing on the diurnal change and regulation mechanism of TSH production in the rat PT. Therefore, in the present study, we examined diurnal changes of in TSH, and ,-glycoprotein subunit (,GSU) mRNA expression and TSH immunoreactivity (-ir) in the rat PT, and also examined the relationship between melatonin and TSH production in vivo. Both TSH, mRNA expression and ,GSU mRNA expression in the PT showed diurnal variations: the expression levels were lowest at the light phase [Zeitgeber time (ZT)4] and high at the dark phase (ZT12 and ZT20). TSH-ir in the PT showed the lowest level at ZT4, as was found for mRNA expression. Interestingly, TSH-ir, which was confined to the Golgi apparatus at ZT4, spread to the cytoplasm, and most of the TSH cells in the PT were uniformly immunostained in the cytoplasm at ZT20. Despite the fact that chronic administration of melatonin suppressed TSH, and ,GSU mRNA expression, TSH-ir in the PT was significantly enhanced. These findings results clearly show that there are diurnal changes in TSH expression and accumulation in rat PT-TSH cells and suggest that these fluctuations are regulated by melatonin. [source]


The Metabolic Syndrome: A Brain Disease?

JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2006
Ruud M Buijs
Summary The incidence of obesity with, as consequence, a rise in associated diseases such as diabetes, hypertension and dyslipidemia , the metabolic syndrome , is reaching epidemic proportions in industrialized countries. Here, we provide a hypothesis that the biological clock which normally prepares us each morning for the coming activity period is altered due to a modern life style of low activity during the day and late-night food intake. Furthermore, we review the anatomical evidence supporting the proposal that an unbalanced autonomic nervous system output may lead to the simultaneous occurrence of diabetes type 2, dyslipidemia, hypertension and visceral obesity. [source]


Daily Rhythms in Glucose Metabolism: Suprachiasmatic Nucleus Output to Peripheral Tissue

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003
S. E. La Fleur
Abstract The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes. [source]


Role for the Pineal and Melatonin in Glucose Homeostasis: Pinealectomy Increases Night-Time Glucose Concentrations

JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2001
S. E. La Fleur
Abstract The effects of melatonin on glucose metabolism are far from understood. In rats, the biological clock generates a 24-h rhythm in plasma glucose concentrations, with declining concentrations in the dark period. We hypothesized that, in the rat, melatonin enhances the dark signal of the biological clock, decreasing glucose concentrations in the dark period. We measured 24-h rhythms of plasma concentrations of glucose and insulin in pinealectomized rats fed ad libitum and subjected to a scheduled feeding regimen with six meals equally distributed over the light/dark cycle and compared them with previous data of intact rats. Pinealectomy dampened the amplitude of the 24-h rhythm in plasma glucose concentrations in rats fed ad libitum, and abolished it completely in rats subjected to the scheduled feeding regimen, while plasma insulin concentrations did not change under both conditions. Pinealectomy abolished the nocturnal decline in plasma glucose concentrations irrespective of whether rats were fed ad libitum or subjected to the scheduled feeding regimen. Melatonin replacement restored 24-h mean plasma glucose concentrations in pinealectomized rats that were subjected to the scheduled feeding regimen but, interestingly, it did not restore the 24-h rhythm. Melatonin treatment also resulted in higher meal-induced insulin responses, probably mediated via an increased sensitivity of the ,-cells. Taken together, our data demonstrate that the pineal hormone, melatonin, influences both glucose metabolism and insulin secretion from the pancreatic ,-cell. The present study also demonstrates that removal of the pineal gland cannot be compensated by mimicking plasma melatonin concentrations only. [source]


A Hes1-based oscillator in cultured cells and its potential implications for the segmentation clock

BIOESSAYS, Issue 3 2003
J. Kim Dale
During somitogenesis an oscillatory mechanism termed the "segmentation" clock generates periodic waves of gene expression, which translate into the periodic spatial pattern manifest as somites. The dynamic expression of the clock genes shares the same periodicity as somitogenesis. Notch signaling is believed to play a role in the segmentation clock mechanism. The paper by Hirata et al.(1) identifies a biological clock in cultured cells that is dependent upon the Notch target gene Hes1, and which shows a periodicity similar to that of the segmentation clock. This finding opens the possibility that the same oscillator mechanism might also operate in other tissues or cell types. BioEssays 25:200,203, 2003. © 2003 Wiley Periodicals, Inc. [source]


The brain's calendar: neural mechanisms of seasonal timing

BIOLOGICAL REVIEWS, Issue 1 2004
Michel A. Hofman
ABSTRACT The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal component of the mammalian biological clock, the neural timing system that generates and coordinates a broad spectrum of physiological, endocrine and behavioural circadian rhythms. The pacemaker of the SCN oscillates with a near 24 h period and is entrained to the diurnal light-dark cycle. Consistent with its role in circadian timing, investigations in rodents and non-human primates furthermore suggest that the SCN is the locus of the brain's endogenous calendar, enabling organisms to anticipate seasonal environmental changes. The present review focuses on the neuronal organization and dynamic properties of the biological clock and the means by which it is synchronized with the environmental lighting conditions. It is shown that the functional activity of the biological clock is entrained to the seasonal photic cycle and that photoperiod (day length) may act as an effective zeitgeber. Furthermore, new insights are presented, based on electrophysiological and molecular studies, that the mammalian circadian timing system consists of coupled oscillators and that the clock genes of these oscillators may also function as calendar genes. In summary, there are now strong indications that the neuronal changes and adaptations in mammals that occur in response to a seasonally changing environment are driven by an endogenous circadian clock located in the SCN, and that this neural calendar is reset by the seasonal fluctuations in photoperiod. [source]