| |||
Biological Approaches (biological + approach)
Kinds of Biological Approaches Selected AbstractsImprovement of muscle healing through enhancement of muscle regeneration and prevention of fibrosisMUSCLE AND NERVE, Issue 3 2003Kenji Sato MD Abstract Skeletal muscle is able to repair itself through regeneration. However, an injured muscle often does not fully recover its strength because complete muscle regeneration is hindered by the development of fibrosis. Biological approaches to improve muscle healing by enhancing muscle regeneration and reducing the formation of fibrosis are being investigated. Previously, we have determined that insulin-like growth factor,1 (IGF-1) can improve muscle regeneration in injured muscle. We also have investigated the use of an antifibrotic agent, decorin, to reduce muscle fibrosis following injury. The aim of this study was to combine these two therapeutic methods in an attempt to develop a new biological approach to promote efficient healing and recovery of strength after muscle injuries. Our findings indicate that further improvement in the healing of muscle lacerations is attained histologically by the combined administration of IGF-1 to enhance muscle regeneration and decorin to reduce the formation of fibrosis. This improvement was not associated with improved responses to physiological testing, at least at the time-points tested in this study. Muscle Nerve 28: 365,372, 2003 [source] Can behavioral evolution be measured on a staircase? a commentaryDEVELOPMENTAL PSYCHOBIOLOGY, Issue 1 2004Celia L. Moore Abstract The serious, comparative study of behavioral complexity that Greenberg et al. advocate is a progressive direction for the field, but their proposal to separate comparative psychology from its roots in evolutionary biology seems regressive. Modern evolutionary theory has been broadened within biology to include development and paleontology alongside natural selection, making closer integration with that discipline particularly timely. Such an integrated evolutionary approach in psychology would offer a useful alternative to the adaptationism popularized by evolutionary psychology. Although the differences between comparative psychologists and biologists may be blurred in the process, the behavioral sciences will be better served by a rich biological approach to evolution than by a uniquely psychological approach. © 2003 Wiley Periodicals, Inc. Dev Psychobiol 44: 16,20, 2004. [source] Sickness and Aggressive Behavior in Dominant and Subordinate Mice,ETHOLOGY, Issue 2 2009Daniel W. H. Cohn Sick animals show a set of organized behavioral changes (sickness behavior), which is the result of a motivational re-organization of the behavior as a whole. Sickness behavior display can be influenced by the social context. In this work, we sought to investigate the regulation of sickness behavior within a pair of mice in the presence of an intruder mouse. Dominant and subordinate mice were treated with the bacterial endotoxin lipopolysaccharide (LPS) and were challenged with the presence of an intruder mouse. LPS effects depended on ranking and social context. Even though dominant mice displayed more agonistic interaction towards the intruder, subordinate mice displayed agonistic behavior towards the intruder when their dominant companion was treated with LPS. The results show that, not only sickness behavior is differentially expressed among different social ranks, but also that sickness behavior is related to different reactions among surrounding animals. These data are relevant for a biological approach to the relation between sickness behavior and social behavior. [source] Bio-mimetic scaling of mechanical behavior of thin films, coatings, and surfaces by Laser Interference MetallurgyADVANCED ENGINEERING MATERIALS, Issue 9 2005C. Daniel Biological solutions to enhance strength and stability often use hierarchical composite structures. The effect is not based on large chemical variations, but instead is realized by structural composites with long-range order. Laser Interference Metallurgy is a newly developed technique that utilizes this biological approach to optimize the mechanical properties of surfaces and thin films. The possibility of scaling mechanical properties is quantitatively analyzed and compared with the biological approach. [source] Quantitative modeling of triacylglycerol homeostasis in yeast , metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growthFEBS JOURNAL, Issue 22 2008Jürgen Zanghellini Triacylglycerol metabolism in Saccharomyces cerevisiae was analyzed quantitatively using a systems biological approach. Cellular growth, glucose uptake and ethanol secretion were measured as a function of time and used as input for a dynamic flux-balance model. By combining dynamic mass balances for key metabolites with a detailed steady-state analysis, we trained a model network and simulated the time-dependent degradation of cellular triacylglycerol and its interaction with fatty acid and membrane lipid synthesis. This approach described precisely, both qualitatively and quantitatively, the time evolution of various key metabolites in a consistent and self-contained manner, and the predictions were found to be in excellent agreement with experimental data. We showed that, during pre-logarithmic growth, lipolysis of triacylglycerol allows for the rapid synthesis of membrane lipids, whereas de novo fatty acid synthesis plays only a minor role during this growth phase. Progress in triacylglycerol hydrolysis directly correlates with an increase in cell size, demonstrating the importance of lipolysis for supporting efficient growth initiation. [source] Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosisMUSCLE AND NERVE, Issue 3 2003Kenji Sato MD Abstract Skeletal muscle is able to repair itself through regeneration. However, an injured muscle often does not fully recover its strength because complete muscle regeneration is hindered by the development of fibrosis. Biological approaches to improve muscle healing by enhancing muscle regeneration and reducing the formation of fibrosis are being investigated. Previously, we have determined that insulin-like growth factor,1 (IGF-1) can improve muscle regeneration in injured muscle. We also have investigated the use of an antifibrotic agent, decorin, to reduce muscle fibrosis following injury. The aim of this study was to combine these two therapeutic methods in an attempt to develop a new biological approach to promote efficient healing and recovery of strength after muscle injuries. Our findings indicate that further improvement in the healing of muscle lacerations is attained histologically by the combined administration of IGF-1 to enhance muscle regeneration and decorin to reduce the formation of fibrosis. This improvement was not associated with improved responses to physiological testing, at least at the time-points tested in this study. Muscle Nerve 28: 365,372, 2003 [source] Systems biology and its application to the understanding of neurological diseases,ANNALS OF NEUROLOGY, Issue 2 2009Pablo Villoslada MD Recent advances in molecular biology, neurobiology, genetics, and imaging have demonstrated important insights about the nature of neurological diseases. However, a comprehensive understanding of their pathogenesis is still lacking. Although reductionism has been successful in enumerating and characterizing the components of most living organisms, it has failed to generate knowledge on how these components interact in complex arrangements to allow and sustain two of the most fundamental properties of the organism as a whole: its fitness, also termed its robustness, and its capacity to evolve. Systems biology complements the classic reductionist approaches in the biomedical sciences by enabling integration of available molecular, physiological, and clinical information in the context of a quantitative framework typically used by engineers. Systems biology employs tools developed in physics and mathematics such as nonlinear dynamics, control theory, and modeling of dynamic systems. The main goal of a systems approach to biology is to solve questions related to the complexity of living systems such as the brain, which cannot be reconciled solely with the currently available tools of molecular biology and genomics. As an example of the utility of this systems biological approach, network-based analyses of genes involved in hereditary ataxias have demonstrated a set of pathways related to RNA splicing, a novel pathogenic mechanism for these diseases. Network-based analysis is also challenging the current nosology of neurological diseases. This new knowledge will contribute to the development of patient-specific therapeutic approaches, bringing the paradigm of personalized medicine one step closer to reality. Ann Neurol 2009;65:124,139 [source] A biological approach in a patient with psoriasis and bullous pemphigoid associated with losartan therapyCLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 2 2008R. Saraceno Summary Several cases of psoriasis associated with bullous disorders have been reported, and it is clearly recognized that bullous pemphigoid (BP) is the most common bullous disorder observed in association with psoriasis, especially after ultraviolet (UV)B and psoralen UVA therapy. Moreover, other medications have been repeatedly reported to induce bullous diseases, especially pemphigus vulgaris. We report for the first time a case of BP possibly induced by losartan, an angiotensin II antagonist, in a patient with a severe psoriatic background. Angiotensin II type 1 receptor antagonists belong to a new class of drug for hypertension or congestive heart failure with established efficacy and few side-effects. Coexistence of psoriasis vulgaris with bullous diseases represents also a difficult therapeutic challenge. This rare case of psoriasis and generalized BP triggered by a sartan drug was treated with rituximab and etanercept. [source] Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospectsFEMS MICROBIOLOGY ECOLOGY, Issue 2 2007Baoyu Tian Abstract As a group of important natural enemies of nematode pests, nematophagous bacteria exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on nematodes through the direct suppression of nematodes, promoting plant growth, and facilitating the rhizosphere colonization and activity of microbial antagonists. This review details the nematophagous bacteria known to date, including parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria. We focus on recent research developments concerning their pathogenic mechanisms at the biochemical and molecular levels. Increased understanding of the molecular basis of the various pathogenic mechanisms of the nematophagous bacteria could potentially enhance their value as effective biological control agents. We also review a number of molecular biological approaches currently used in the study of bacterial pathogenesis in nematodes. We discuss their merits, limitations and potential uses. [source] Genetically Engineered Phage Fibers and Coatings for Antibacterial ApplicationsADVANCED FUNCTIONAL MATERIALS, Issue 2 2010Joan Y. Mao Abstract Multifunctionality can be imparted to protein-based fibers and coatings via either synthetic or biological approaches. Here, potent antimicrobial functionality of genetically engineered, phage-based fibers and fiber coatings, processed at room temperature, is demonstrated. Facile genetic engineering of the M13 virus (bacteriophage) genome leverages the well-known antibacterial properties of silver ions to kill bacteria. Predominant expression of negatively charged glutamic acid (E3) peptides on the pVIII major coat proteins of M13 bacteriophage enables solution-based, electrostatic binding of silver ions and subsequent reduction to metallic silver along the virus length. Antibacterial fibers of micrometer-scale diameters are constructed from such an E3-modified phage via wet-spinning and glutaraldehyde-crosslinking of the E3-modified viruses. Silverization of the free-standing fibers is confirmed via energy dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy, showing ,0.61,µg cm,1 of silver on E3,Ag fibers. This degree of silverization is threefold greater than that attainable for the unmodified M13,Ag fibers. Conferred bactericidal functionality is determined via live,dead staining and a modified disk-diffusion (Kirby,Bauer) measure of zone of inhibition (ZoI) against Staphylococcus epidermidis and Escherichia coli bacterial strains. Live,dead staining and ZoI distance measurements indicate increased bactericidal activity in the genetically engineered, silverized phage fibers. Coating of Kevlar fibers with silverized E3 phage exhibits antibacterial effects as well, with relatively smaller ZoIs attributable to the lower degree of silver loading attainable in these coatings. Such antimicrobial functionality is amenable to rapid incorporation within fiber-based textiles to reduce risks of infection, biofilm formation, or odor-based detection, with the potential to exploit the additional electronic and thermal conductivity of fully silverized phage fibers and coatings. [source] Functional polymorphisms in dopamine and serotonin pathway genes,HUMAN MUTATION, Issue 1 2006Ursula M. D'Souza Abstract There is mounting evidence on the functional significance of single nucleotide and simple repeat sequence polymorphisms in both the coding and regulatory regions of genes in the monoamine neurotransmitter pathways. Many of these gene variants have been associated with human behavioral disorders and traits, and thus have important clinical relevance. This review summarizes the literature on the published functional studies from a molecular, cellular, and neurobiological perspective, and notes their possible behavioral consequences. Functional studies have adopted a variety of strategies. Pharmacological studies have focused on the effects of gene variation at the protein level in terms of binding to ligands or drugs. Other key investigations have determined effects on gene expression at the level of transcription in mammalian cell cultures, lymphoblasts, and/or human postmortem brain tissue. This has enabled the comparison of in vitro and in vivo data, and furthermore provides an improved perceptive of their respective advantages. Additionally, molecular biological approaches have identified transcription factors (DNA-binding proteins) that interact with the motifs within the polymorphisms themselves. Various neuroimaging studies have further determined the relationship of genotype with protein availability in the brain, and thus have contributed to our understanding of the in vivo functional significance of gene variants. Finally, there is growing evidence from both human and animal studies on the interaction of functional polymorphisms with the environment in determining a behavioral outcome. Taken together, these findings have contributed to a greater understanding of the plausible molecular mechanisms that underpin the functional significance of polymorphisms in monoamine neurotransmitter pathway genes, and how they may influence behavioral phenotypes. Hum Mutat 27(1), 1,13, 2006. © 2005 Wiley-Liss, Inc. [source] Functional genomics studies on the innate immunity of disease vectorsINSECT SCIENCE, Issue 1 2008Luke A. Baton Abstract The increasing availability of genome sequences and the development of high-throughput techniques for gene expression profiling and functional characterization are transforming the study of innate immunity and other areas of insect biology. Already, functional genomic approaches have enabled a quantum advance in the characterization of mosquito immune responses to malaria parasite infection, and similar high-throughput functional genomic studies of other vector-pathogen interactions can be expected in the near future. The application of microarray-based and other expression analyses provide genome-wide transcriptional profiles that can be used to identify insect immune system components that are differentially regulated upon exposure to various classes of pathogens, including many important etiologic agents of human and animal diseases. The role of infection-responsive or other candidate immune genes identified through comparative genomic approaches can then be functionally characterized, either in vivo, for instance in adult mosquitoes, or in vitro using cell lines. In most insect vectors of human pathogens, germ-line transgenesis is still technically difficult and maintenance of multiple transgenic lines logistically demanding. Consequently, transient RNA interference (RNAi)-mediated gene-silencing has rapidly become the method of choice for functional characterization of candidate innate immune genes. The powerful combination of transcriptional profiling in conjunction with assays using RNAi to determine gene function, and identify regulatory pathways, together with downstream cell biological approaches to determine protein localization and interactions, will continue to provide novel insights into the role of insect innate immunity in a variety of vector-pathogen interactions. Here we review advances in functional genomics studies of innate immunity in the insect disease vectors, over the past decade, with a particular focus on the Anopheles mosquito and its responses to malaria infection. [source] Detection of oral streptococci with collagen-binding properties in saliva specimens from mothers and their childrenINTERNATIONAL JOURNAL OF PAEDIATRIC DENTISTRY, Issue 4 2010RYOTA NOMURA International Journal of Paediatric Dentistry 2010; 20: 254,260 Background., Approximately 10,20% of Streptococcus mutans strains have been reported to possess collagen-binding properties, whereas other species in the oral cavity with those properties remain to be elucidated. Aim., To identify strains with collagen-binding properties and analyse their characteristics in comparison with S. mutans. Design., A total of 110 expectorated saliva specimens were collected from 55 pairs of mothers and their children. Bacterial strains with collagen-binding properties were isolated and the species specified. In addition, strains with collagen-binding properties isolated from mother,child pairs were analysed using molecular biological approaches. Results., The detection frequency of strains with collagen-binding properties was shown to be 40.9%, among which S. salivarius was the most frequently detected, followed by S. mutans. The collagen-binding activity of the S. mutans group was the highest, followed by S. salivarius. In addition, S. mutans and S. salivarius strains from 3 and 1 mother,child pairs, respectively, were shown to be the same clones. Conclusions., Our results indicate that S. mutans and S. salivarius are major species with collagen-binding properties in the oral cavity, and that strains with such properties may be related to mother,child transmission. [source] Salinity-related desertification and management strategies: Indian experienceLAND DEGRADATION AND DEVELOPMENT, Issue 4 2009G. Singh Abstract High concentration of salts in the rootzone soil limits the productivity of nearly 953 million ha of productive land in the world. Australia, followed by Asia, has the largest area under salinity and sodicity. Most of the salt-affected soils and brackish ground water resources are confined to arid and semiarid regions and are the causative factors for triggering the process of desertification. The problem of salinity and sodicity has degraded about 6·73 million ha area in India. Secondary salinization associated with introduction of irrigation in dry areas like Thar desert in the western part of the country and Sharda Sahayak in Central India have caused desertification due to rise of salts with the rise in ground water level. Large scale cultivation of prawns using sea water in coastal Andhra Pradesh and elsewhere rendered about 2.1 million ha area unfit for agriculture. Similarly, 30,84 per cent ground water in north-western states of the country is either saline and /or brackish and is unfit for irrigation. Use of marginal quality water for irrigation has rendered several thousand ha of productive land unfit for cultivation. The Central Soil Salinity Research Institute was established in 1969 at Karnal to develop sustainable and eco-friendly technologies for reclamation and management of salt-affected soils and judicious use of marginal quality waters. The institute has developed location-specific techniques for reversion of salinity related desertification in India. Salient findings of research during the last three decades and more are presented in this review. This paper deals with (a) classification, nature and extent of salt-affected soils and poor quality water in India, (b) case studies/socio-economic concerns of salinity related desertification, (c) chemical, hydrological and biological approaches in use for rehabilitation of salt-affected soils, (d) guidelines for safe and productive use of marginal quality ground water through cyclic and mixed mode and precision irrigation techniques, (e) successful rehabilitation case studies, (f) alternate land use practices such as raising forest plantations, horticulture, agroforestry, high value medicinal, aromatic and flowering crops, etc., (g) technological, social, economic and environmental impacts and (h) future line of research. Issues requiring policy initiatives to halt salinity-related desertification are also discussed in this review paper. Copyright © 2009 John Wiley & Sons, Ltd. [source] Disorders of left,right asymmetry: Heterotaxy and situs inversus,AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 4 2009Mardi J. Sutherland Abstract Cilia function is critical to the development of proper organ laterality. Primary ciliary dyskinesia (PCD) causes randomization of situs. Heterotaxy, or situs ambiguus, is an abnormal arrangement of the thoracic and abdominal organs that results in congenital anomalies. Animal models and developmental biological approaches have defined pathways required during embryogenesis for proper left,right pattern formation. New candidates for genetic causes of human laterality disorders have emerged from recent studies on the assembly, transport, and signaling functions of cilia at the node as well as identification of cilia within the developing heart. There is evidence that deleterious genetic variants within one or more developmental pathways may disrupt signaling in a synergistic or combinatorial fashion to cause congenital anomalies. The molecular pathways underlying PCD and heterotaxy are being discovered at a rapid pace, and there is increasing recognition of the overlap between these two categories of laterality disorders and their relationship to isolated cardiovascular malformations. This review focuses on the clinical manifestations, molecular mechanisms, and human genetics of these disorders of laterality. © 2009 Wiley-Liss, Inc. [source] Cellular shellization: Surface engineering gives cells an exteriorBIOESSAYS, Issue 8 2010Ben Wang Abstract Unlike eggs and diatoms, most single cells in nature do not have structured shells to provide extensive protection. It is a challenge to artificially confer shell structures on living cells to improve their inherent properties and functions. We discuss four different types of cellular shellizations: man-made hydrogels, sol-gels, polyelectrolytes, and mineral shells. We also explore potential applications, such as cell storage, protection, delivery, and therapy. We suggest that shellization could provide another means to regulate and functionalize cells. Specifically, the integration of living cells and non-living functional shells may be developed as a novel strategy to create "super" or intelligent cells. Unlike biological approaches, this material-based bio-interface regulation is inexpensive, effective, and convenient, opening up a novel avenue for cell-based technologies and practices. [source] In search of new tractable diatoms for experimental biologyBIOESSAYS, Issue 7 2008Victor A. Chepurnov Diatoms are a species-rich group of photosynthetic eukaryotes, with enormous ecological significance and great potential for biotechnology. During the last decade, diatoms have begun to be studied intensively using modern molecular techniques and the genomes of four diatoms have been wholly or partially sequenced. Although new insights into the biology and evolution of diatoms are accumulating rapidly due to the availability of reverse genetic tools, the full potential of these molecular biological approaches can only be fully realized if experimental control of sexual crosses becomes firmly established and widely accessible to experimental biologists. Here we discuss the issue of choosing new models for diatom research, by taking into account the broader context of diatom mating systems and the place of sex in relation to the intricate cycle of cell size reduction and restitution that is characteristic of most diatoms. We illustrate the results of our efforts to select and develop experimental systems in diatoms, using species with typical life cycle attributes, which could be used as future model organisms to complement existing ones. BioEssays 30:692,702, 2008. © 2008 Wiley Periodicals, Inc. [source] Camellia japonica suppresses immunoglobulin E-mediated allergic response by the inhibition of Syk kinase activation in mast cellsCLINICAL & EXPERIMENTAL ALLERGY, Issue 5 2008J-H. Lee Summary Background Novel approaches are being explored to develop new therapies for various allergic diseases. Complementary and alternative medicines are considered to be promising avenues for the development of such new therapies. Objectives To investigate the effect of many Korean plants on the IgE-mediated allergic response in mast cells and in vivo, and its mechanism of action. Materials and methods The anti-allergic activity was tested by evaluating effects on degranulation of mast cells in culture and passive cutaneous anaphylaxis (PCA) in vivo. Its mechanism of action was investigated by immunoblotting analysis, immunoprecipitation, RT-PCR, and other molecular biological approaches in mast cells. Results We screened approximately 100 natural plant extracts collected in Korea for in vitro anti-allergic activity. The leaf extract of Camellia japonica (LECJ) exhibited the most potent effect on degranulation in antigen-stimulated rodent and human mast cells. LECJ reversibly inhibited degranulation in a dose-dependent manner, with IC50 values of ,50 ,g/mL for the mast cells, and it also suppressed the expression and secretion of TNF-, and IL-4 in rat basophilic leukaemia-2H3 mast cells. In agreement with its in vitro activity, LECJ significantly inhibited mast cell-mediated PCA in an animal model. LECJ inhibited activating phosphorylation of tyrosine Y371 on Syk kinase, indicating that LECJ inhibits the activity of Src-family kinases in mast cells. In the in vitro kinase assay, LECJ directly inhibited Lyn kinase, the major Src-family kinase in the cells. It also suppressed Akt and MAP kinases, which are critical for the production of various pro-inflammatory cytokines in mast cells. In high-performance liquid chromatography analysis, quercetin-3-,- d -glucoside and eugenol were identified as the major active components. Conclusion The present results strongly suggest that the anti-allergic activity of LECJ is mediated through inhibiting degranulation and allergic cytokine secretion by inhibition of Src-family kinase in mast cells and it may be useful for the treatment of mast cell-related immediate and delayed allergic diseases. [source] Osteoclast-targeting small molecules for the treatment of neoplastic bone metastasesCANCER SCIENCE, Issue 11 2009Makoto Kawatani Osteoclasts are highly specialized cells that resorb bone, and their abnormal activity is implicated in a variety of human bone diseases. In neoplastic bone metastasis, the bone destruction caused by osteoclasts is not only associated with the formation and progression of metastatic lesions, but also could contribute to frequent complications such as severe pain and pathological fractures, which greatly diminish the quality of life of patients. Bisphosphonates, potent antiresorptive drugs, have been shown to have efficacy for treating bone metastases in many types of cancer, and the development of various molecularly targeted agents is currently proceeding. Thus, inhibition of osteoclast function is now established as an important treatment strategy for bony metastases. This review focuses on promising small molecules that disrupt osteoclast function and introduces our chemical/biological approach for identifying osteoclast-targeting small molecular inhibitors. (Cancer Sci 2009) [source] |