| |||
Biogeographical Areas (biogeographical + area)
Selected AbstractsAre there general rules governing parasite diversity?DIVERSITY AND DISTRIBUTIONS, Issue 3 2007Small mammalian hosts, gamasid mite assemblages ABSTRACT Parasite biodiversity varies on several scales, and in particular among different host species. Previous attempts at finding relationships between host features and the diversity of the parasite assemblages they harbour have yielded inconsistent results, suggesting strongly that any patterns might be taxon-specific. Here, we examined the potential of three host characteristics (host body mass, basal metabolic rate, and area of the geographical range) as determinants of parasite diversity in one group of ectoparasites, gamasid mites (superfamily Dermanyssoidea), using data from 63 species of small mammalian hosts. Our analyses used three measures of parasite diversity (species richness, the Shannon diversity index, and average taxonomic distinctness), and controlled for sampling effort and phylogenetic influences. Although several significant relationships were observed, they depended entirely on which diversity measure was used, or on which host taxon was investigated (insectivores vs. rodents and lagomorphs). In addition, the present results on patterns of mite diversity were not consistent with those of an earlier study involving roughly the same host taxa and the same biogeographical area, but a different group of ectoparasites, i.e. fleas. Thus, there appears to be no universal determinant of parasite diversity, and associations between host features and parasite diversity probably evolve independently in different host,parasite systems. [source] Are urban bird communities influenced by the bird diversity of adjacent landscapes?JOURNAL OF APPLIED ECOLOGY, Issue 5 2001Philippe Clergeau Summary 1The species diversity of adjacent landscapes influences the conservation or restoration of several animal groups in urban areas, but the effect on birds is unclear. To address this question, we compared bird species richness (BSR) and community composition between periurban (area surrounding the town) and urban (suburban and centre areas) landscapes across three spatial scales. 2At a large biogeographical scale (temperate and boreal climatic zone), relationships between the BSR of urban areas and their surrounding landscapes were examined in a meta-analysis of 18 published studies. In general, BSR was negatively correlated with latitude and urbanization. The BSR of suburban and centre landscapes correlated positively with the BSR of periurban landscapes. However, latitudinal effects were also involved, as BSR in urban and periurban landscapes declined as town latitude increased. Similarity indices were low (50%) between periurban and centre bird communities. 3At a regional scale, we assessed winter bird data from several towns within three regions of temperate and boreal countries (western France, northern Finland and eastern Canada). The type of periurban landscape, number of inhabitants and town diameter did not affect BSR. BSR was similar between the cities of a given biogeographical area. Bird communities were more similar between similar habitat types of different cities than between different habitats of the same city. 4At a local scale, we tested the influence of proximity to the periurban landscape on BSR in parks of western French towns of different size. Neither BSR nor community similarity changed in relation to the distance of the park from the periurban landscape. 5Guild composition according to diet and feeding habitat did not vary between urban and periurban locations at regional or local scales. 6We conclude that, at regional and local scales, urban bird communities are independent of the bird diversity of adjacent landscapes, and that local features are more important than surrounding landscapes in determining BSR. Whatever the biodiversity quality of the periurban landscape, site-specific actions such as shrub and tree planting, water restoration and increasing vegetation diversity can change bird diversity in towns and improve the quality of human,wildlife contacts. [source] Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblagesJOURNAL OF APPLIED ECOLOGY, Issue 1 2006D. PONT Summary 1The need for sensitive biological measures of aquatic ecosystem integrity applicable at large spatial scales has been highlighted by the implementation of the European Water Framework Directive. Using fish communities as indicators of habitat quality in rivers, we developed a multi-metric index to test our capacity to (i) correctly model a variety of metrics based on assemblage structure and functions, and (ii) discriminate between the effects of natural vs. human-induced environmental variability at a continental scale. 2Information was collected for 5252 sites distributed among 1843 European rivers. Data included variables on fish assemblage structure, local environmental variables, sampling strategy and a river basin classification based on native fish fauna similarities accounting for regional effects on local assemblage structure. Fifty-eight metrics reflecting different aspects of fish assemblage structure and function were selected from the available literature and tested for their potential to indicate habitat degradation. 3To quantify possible deviation from a ,reference condition' for any given site, we first established and validated statistical models describing metric responses to natural environmental variability in the absence of any significant human disturbance. We considered that the residual distributions of these models described the response range of each metric, whatever the natural environmental variability. After testing the sensitivity of these residuals to a gradient of human disturbance, we finally selected 10 metrics that were combined to obtain a European fish assemblage index. We demonstrated that (i) when considering only minimally disturbed sites the index remains invariant, regardless of environmental variability, and (ii) the index shows a significant negative linear response to a gradient of human disturbance. 4Synthesis and applications. In this reference condition modelling approach, by including a more complete description of environmental variability at both local and regional scales it was possible to develop a novel fish biotic index transferable between catchments at the European scale. The use of functional metrics based on biological attributes of species instead of metrics based on species themselves reduced the index sensitivity to the variability of fish fauna across different biogeographical areas. [source] The biogeography of seaweeds in Southeast AlaskaJOURNAL OF BIOGEOGRAPHY, Issue 3 2009Sandra C. Lindstrom Abstract Aim, This article reviews the history of seaweed collections in Southeast Alaska from the early Russian explorers to contemporary efforts. It summarizes other studies of Southeast Alaskan seaweeds from a biogeographical perspective, and compares the known seaweed flora near three population centres (Ketchikan, Sitka and Juneau) with those of other regions within Alaska, and with nearby regions. Location, For this article, Southeast Alaska includes all inside and outside waters of the Alexander Archipelago from Dixon Entrance (54°40, N, 133°00, W) to Icy Point (58°23,10, N, 137°04,20, W). Methods, The literature on seaweeds occurring in Southeast Alaska is reviewed from a biogeographical perspective, and herbarium records for Southeast Alaska from the Alaska Seaweed Database project are used to provide an overview of the biogeography of the area. Records for the population centres of Ketchikan, Sitka and Juneau are compared with records from other areas within Alaska and with nearby regions to determine floristic similarities. Results, Southeast Alaska has the most diverse seaweed flora of any region of Alaska. A list of species known to occur in Southeast Alaska is appended (in Supplementary Material) and includes their reported occurrences in three population centres (Juneau, Ketchikan and Sitka). Recognition of at least three distinct biogeographical areas associated with these three centres is supported by a comparison of their floras with those of other regions in the North Pacific. A close relationship of some species with conspecifics in the north-west Atlantic is also noted. In contrast, ecological, physiological and genetic differentiation of Southeast Alaskan seaweeds from conspecifics in Washington State or even from different areas of Southeast Alaska are documented. A ShoreZone coastal habitat system, which is being implemented to inventory and map the entire shoreline of Southeast Alaska, is defining new biogeographical units called ,bioareas' on the basis of the distribution of canopy kelps and lower intertidal algal assemblages. Main conclusions, Southeast Alaska has the most diverse seaweed flora of any region of Alaska. This is a reflection of its extensive coastline, with varied past and present environmental conditions. Different parts of Southeast Alaska show similarities to different areas outside Southeast Alaska. Despite this, much remains to be learned about the biogeography of seaweeds in Southeast Alaska, and many questions remain to be answered. [source] Exploring the Afromontane centre of endemism: Kniphofia Moench (Asphodelaceae) as a floristic indicatorJOURNAL OF BIOGEOGRAPHY, Issue 12 2008Syd Ramdhani Abstract Aim, The genus Kniphofia contains 71 species with an African,Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location, Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods, Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range-restricted taxa. Results, Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species-rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range-restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range-restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions, The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full-degree scale retrieved areas that correlate well with those obtained by the chorological approach. [source] Zoogeography of the southern African ascidian faunaJOURNAL OF BIOGEOGRAPHY, Issue 12 2004Carmen Primo Abstract Aim, To describe the biogeography of the ascidian fauna of southern Africa, to compare the results obtained with those reported for other fauna and flora of the same region, and to speculate about the origin of ascidians in the region. Location, Southern Africa extending over 4000 km from Mossāmedes (15° S,12° E) to Inhaca Island (26°30, S,33° E), including Vema Seamount (31°40, S,8 °20, E), Amsterdam-Saint Paul Islands (38° S,77°30, E) and the Tristan-Gough Islands (38° S,12°20, W). Methods, We constructed a presence/absence matrix of 168 species for 26 biogeographical divisions, 21 classical biogeographical regions described by Briggs (Marine zoogeography, McGraw-Hill, New York, 1974) and five provinces within the southern African region. We considered the following limits and divisions into provinces for the southern African region: Namibia, Namaqua, Agulhas and Natal as proposed by Branch et al. (Two oceans. A guide to the marine life of southern Africa, David Philip Publishers, 1994), and the West Wind Drift Islands province (WWD) according to Briggs (Global biogeography, Elsevier Health Sciences, Amsterdam, 1995). To examine the biogeographical structure, species and divisions were classified using cluster analysis (based on UPGMA as the aggregation algorithm) with the Bray,Curtis index of similarity. This classification was combined with MDS ordination. Main conclusions, Four main groups were obtained from the analysis of affinities among species: (1) species present in the WWD, separated by a high percentage of endemisms and a low number of species with a southern African distribution. Moreover, in the light of the species distribution and the results of further analysis, which revealed that they are completely separated and not at all related to the southern African region, it appears that there are no close relationships among the different islands and seamounts of the West Wind Drift Island province. This province was therefore removed from the remaining analyses; (2) species with a wide distribution; (3) species of colder waters present in Namaqua and Agulhas provinces, a transitional temperate area in which gradual mixing and replacement of species negate previous hypotheses on the existence of a marked distributional break at Cape of Good Hope; (4) species of warmer waters related to Natal province. The classification into biogeographical components was dominated by the endemic (47%), Indo-Pacific (25%) and cosmopolitan (13%) components. The analysis of affinities among biogeographical areas separated Namibia from the rest of the southern African provinces and showed that it was related to some extent to the Antarctic region because of the cold-temperate character of the province and the low sampling effort; Namaqua, Agulhas and Natal were grouped together and found to be closely related to the Indo-West Pacific region. In general, our results were consistent with those obtained for other southern African marine invertebrates. The frequency distribution of solitary/colonial strategies among provinces confirmed the domination of colonial organisms in tropical regions and solitary organisms in colder regions. Finally, we speculate that the southern African ascidian fauna mainly comprises Indo-Pacific, Antarctic and eastern Atlantic ascidians. [source] Spatial patterns of disparity and diversity of the Recent cuttlefishes (Cephalopoda) across the Old WorldJOURNAL OF BIOGEOGRAPHY, Issue 8 2003Pascal Neige Abstract Aim Diversity and disparity metrics of all Recent cuttlefishes are studied at the macroevolutionary scale (1) to establish the geographical biodiversity patterns of these cephalopods at the species level and (2) to explore the relationships between these two metrics. Location Sampling uses what is known about these tropical, subtropical and warm temperate cephalopods of the Old World based on a literature review and on measurements of museum specimens. Some 111 species spread across seventeen biogeographical areas serve as basic units for exploring diversity and disparity metrics in space. Methods Landmarks describe the shape of the cuttlebone (the inner shell of the sepiids) and differences between shapes are quantified using relative warp analyses. Relative warps are thus used as the morphological axis for constructing morphospaces whose characteristics are described by disparity indices: total variance, range, and minimum and maximum of relative warps. These are analysed and then compared with the diversity (species richness) metric. Results Results show no significant latitudinal or longitudinal gradients either for diversity or for disparity. Around the coast of southern Africa, disparity is high regardless of whether diversity (species richness) is high or low. In the ,East Indies' area disparity is low despite the high diversity. Main conclusions The relationship between diversity and disparity is clearly not linear and no simple adjustment models seem to fit. The number of species in a given area does not predict its disparity level. The particular pattern of southern Africa may be the result of paleogeographical changes since the Eocene, whereas that of the ,East Indies' may indicate that this area could act as a centre of origin. However, the lack of any clear phylogenetical hypothesis precludes the study from providing any explanation of the observed patterns. [source] |