Biogeographic Barriers (biogeographic + barrier)

Distribution by Scientific Domains


Selected Abstracts


TEMPERATURE THRESHOLD AS A BIOGEOGRAPHIC BARRIER IN NORTHERN INDIAN OCEAN MACROALGAE,

JOURNAL OF PHYCOLOGY, Issue 4 2006
Tom Schils
The most eastern point of the Arabian Peninsula, Ras Al Hadd, marks the boundary between the Arabian Sea and the Gulf of Oman. This geographic landmark coincides with an abrupt floristic turnover, probably one of the sharpest biotic transitions known in marine biogeography. The floras of different Arabian localities across this floristic break were compared using macrophyte distribution data throughout the Indian Ocean and seasonal sea-surface temperature (SST) data. The localities from the Arabian Gulf and Gulf of Oman differ significantly from those of the Arabian Sea based on their species richness, species composition, average distribution range per species, general temperature affinity of the composing species, and seasonal temperature data of the coastal waters. Pooling the temperature data into two groups (SST3avg, average SST of the three warmest seasons; SSTmin, minimum of the seasonal SSTs) revealed a temperature limit at 28°C using both the temperature affinity data of the floras and the seasonal temperatures recorded for the specific Arabian localities, which significantly separates the Arabian Sea from localities of both Gulfs. Finally, SST data of the Indian Ocean were analyzed using this upper temperature threshold of macrophytes at 28°C and the lower temperature limit of corals at 25°C, revealing general macrophyte diversity patterns. [source]


Inferring the phylogeography and evolutionary history of the splendid fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry

JOURNAL OF AVIAN BIOLOGY, Issue 1 2009
Anna M. Kearns
The phylogeographic structure of the widely distributed arid and semi-arid Australian splendid fairy-wren Malurus splendens was investigated by using variation in plumage characters and mitochondrial DNA (mtDNA). We examined sequences of the mtDNA ND2 gene and used spectrophotometry to quantify chromatic variation in plumage in order to test the current morphology-based intraspecific taxonomy of M. splendens and to discriminate between hypotheses invoking allopatric and parapatric processes in the origin of diversity in the complex. Genetic diversity of M. splendens fell into three divergent geographically structured clades. One represents populations ascribed to the western subspecies M. s. splendens, the other populations of central M. s. musgravi and the third all eastern populations currently ascribed to M. s. emmottorum and M. s. melanotus. Plumage patterns clearly differentiate M. s. splendens and M. s. musgravi, and spectrophotometry identified a step-wise transition in spectra between M. s. melanotus and M. s. emmottorum. Congruence of patterns of phenotypic and genetic variation among western, central and eastern populations of M. splendens strongly suggests that these populations have diverged in allopatry on either side of historical biogeographic barriers in this region. Decoupled patterns of phenotypic and genetic diversity suggest that the divergence of M. s. melanotus and M. s. emmottorum may have occurred without periods of isolation perhaps in response to differences in local environmental conditions, or alternatively, mtDNA and plumage may have different rates of evolution. Critically, we encountered issues with the placement of the root of the M. splendens complex. The root was placed within the subspecies M. s. splendens separating its northern and southern populations and rendering the subspecies paraphyletic. [source]


Phylogeographic analysis detects congruent biogeographic patterns between a woodland agamid and Australian wet tropics taxa despite disparate evolutionary trajectories

JOURNAL OF BIOGEOGRAPHY, Issue 8 2010
Danielle L. Edwards
Abstract Aim, To test the congruence of phylogeographic patterns and processes between a woodland agamid lizard (Diporiphora australis) and well-studied Australian wet tropics fauna. Specifically, to determine whether the biogeographic history of D. australis is more consistent with a history of vicariance, which is common in wet tropics fauna, or with a history of dispersal with expansion, which would be expected for species occupying woodland habitats that expanded with the increasingly drier conditions in eastern Australia during the Miocene,Pleistocene. Location, North-eastern Australia. Methods, Field-collected and museum tissue samples from across the entire distribution of D. australis were used to compile a comprehensive phylo-geographic dataset based on c. 1400 bp of mitochondrial DNA (mtDNA), incorporating the ND2 protein-coding gene. We used phylogenetic methods to assess biogeographic patterns within D. australis and relaxed molecular clock analyses were conducted to estimate divergence times. Hierarchical Shimodaira,Hasegawa tests were used to test alternative topologies representing vicariant, dispersal and mixed dispersal/vicariant biogeographic hypotheses. Phylogenetic analyses were combined with phylogeographic analyses to gain an insight into the evolutionary processes operating within D. australis. Results, Phylogenetic analyses identified six major mtDNA clades within D. australis, with phylogeographic patterns closely matching those seen in many wet tropics taxa. Congruent phylogeographic breaks were observed across the Black Mountain Corridor, Burdekin and St Lawrence Gaps. Divergence amongst clades was found to decrease in a north,south direction, with a trend of increasing population expansion in the south. Main conclusions, While phylogeographic patterns in D australis reflect those seen in many rain forest fauna of the wet tropics, the evolutionary processes underlying these patterns appear to be very different. Our results support a history of sequential colonization of D. australis from north to south across major biogeographic barriers from the late Miocene,Pleistocene. These patterns are most likely in response to expanding woodland habitats. Our results strengthen the data available for this iconic region in Australia by exploring the understudied woodland habitats. In addition, our study shows the importance of thorough investigations of not only the biogeographic patterns displayed by species but also the evolutionary processes underlying such patterns. [source]


Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: evidence of Quaternary climatic changes in their genetic structure

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010
HÉLA SAKKA
The phylogeography of four Apodemus species (Apodemus agrarius, Apodemus peninsulae, Apodemus latronum, and Apodemus draco) was studied in the Far East of Asia, based on sequences of the mitochondrial DNA cytochrome b gene. The results obtained show the existence of many different genetic lineages within the studied Apodemus species, suggesting the isolation and differentiation of populations in multiple refuge areas. Higher genetic diversities in some regions such as Yunnan, Sichuan (China), and eastern Russia suggest these areas are potential refuges for these species. The existence of such complex genetic structures could be linked to the presence of many biogeographic barriers (Himalaya Mountains, Tien-shan Mountains, Altai Mountains, Tibetan Plateau, Gobi desert, Yunnan Guizhou Plateau, Dzungaria basin, and others) in these regions, which were probably reinforced during the Quaternary climate changes. These barriers also played an important role concerning the low dispersal abilities of the two studied Apodemus species adapted to forest habitats (A. latronum and A. draco) with respect to colonizing regions other than China. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 797,821. [source]