| |||
Bile Acids (bile + acid)
Kinds of Bile Acids Terms modified by Bile Acids Selected AbstractsTwo-Way Enantioselective Control in the Epoxidation of Alkenes with the Keto Bile Acid,Oxone® System.CHEMINFORM, Issue 34 2006Olga Bortolini Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Intestinal Bile Acids Can Bind to and Activate the Vitamin D ReceptorNUTRITION REVIEWS, Issue 9 2002Article first published online: 16 SEP 200 An increased level of colon lithocholic acid, a potential tumor promoter, accompanies a high-fat diet. Lithocholic acid can bind to the intestinal vitamin D receptor and thereby induce the cytochrome CYP3A, which detoxifies lithocholic acid by catabolic reactions. [source] Improved Enantioselectivity in the Epoxidation of Cinnamic Acid Derivatives with Dioxiranes from Keto Bile Acids.CHEMINFORM, Issue 2 2003Olga Bortolini Abstract For Abstract see ChemInform Abstract in Full Text. [source] Reflux and pH: ,alkaline' components are not neutralized by gastric pH variationsDISEASES OF THE ESOPHAGUS, Issue 1 2000P. Bechi The ability of the ,alkaline' components of reflux to cause harm in vivo is still open to debate, although these components have been shown in vitro to be capable of damaging the mucosa. The precipitation of bile acids and lysolecithin that occurs at low pH values is the main reason for questioning in vivo mucosal damage. This study was undertaken to determine the composition of gastric aspirates at different original pH values and the degree of solubility of the alkaline components when pH modifications are artificially induced. The samples for chemical analysis were collected from indwelling nasogastric tubes after surgical procedures that did not involve the upper gastrointestinal tract. Bile acid and lysolecithin concentrations were assessed by means of dedicated methods. Thirty-five samples were available for bile acid evaluation and 27 for lysolecithin evaluation. Bile acid and lysolecithin assessments were repeated after pH adjustment at 2, 3.5, 5.5 and 7. For easier assessment of the results, three ranges of the original pH were selected (pH,<,2, 2 , pH < 5, pH , 5). For each pH range, results were pooled together and compared with those in the other pH ranges. Bile acid concentrations were 113 ± 48, 339 ± 90 and 900 ± 303 (mean ± s.e.m. ,mol/L), respectively, in the three groups selected on account of the different original pH values. Differences were significant (p < 0.001). Both taurine- and glycine-conjugated bile acids were represented even at pH < 2. No major differences were observed in bile acid concentration with the artificially induced pH variations. Lysolecithin concentrations were 5.99 ± 3.27, 30.80 ± 8.43 and 108.37 ± 22.17 (mean ± SEM ,g/ml), respectively, in the three groups selected on account of the different original pH ranges. Differences were significant (p < 0.001). No significant differences in lysolecithin concentration were detected with the artificially induced pH variations. In conclusion, both bile acids and lysolecithin are naturally represented in the gastric environment even at very low pH values, although their concentrations decrease on lowering of the naturally occurring pH. Given the concentration variability of bile acids and lysolecithin, further studies are needed to assess the minimal concentration capable of mucosal damage in vivo. [source] Novel pathways for glycaemic control in type 2 diabetes: focus on bile acid modulationDIABETES OBESITY & METABOLISM, Issue 11 2008Eliot A. Brinton Type 2 diabetes is a common disorder with high risk of macrovascular and microvascular complications. These complications are largely driven by hyperglycaemia, dyslipidaemia and hypertension, for which aggressive treatment is thus warranted. Achieving and maintaining control of all three risk factors is especially difficult, however, and new therapeutic approaches could be useful. Bile acids have a well-established and important role in cholesterol homeostasis. Normally, their levels are maintained primarily by ileal reabsorption and enterohepatic recycling. Bile acid sequestrants bind bile acids in the intestine, reduce this recycling and deplete the bile acid pool, thereby stimulating use of hepatic cholesterol for bile acid synthesis, which leads to accelerated removal of LDL from the plasma and a decrease in LDL-cholesterol levels. Interestingly, recent evidence suggests that bile acid sequestrants can lower glucose levels to a clinically meaningful degree. This review presents this evidence and the possible mechanisms by which these glucose-lowering effects occur and discusses the apparently unique ability of bile acid sequestrants among lipid-lowering agents to significantly improve two cardiovascular risk factors, hyperglycaemia and dyslipidaemia. There is renewed interest in the use of bile acid sequestrants in individuals with type 2 diabetes, most of whom would benefit from additional reductions in both LDL-cholesterol and glycaemia. [source] Activation of the Raf-1/MEK/ERK cascade by bile acids occurs via the epidermal growth factor receptor in primary rat hepatocytesHEPATOLOGY, Issue 2 2002Yi-Ping Rao Bile acids have been reported to activate several different cell signaling cascades in rat hepatocytes. However, the mechanism(s) of activation of these pathways have not been determined. This study aims to determine which bile acids activate the Raf-1/MEK/ERK cascade and the mechanism of activation of this pathway. Taurodeoxycholic acid (TDCA) stimulated (+235%) the phosphorylation of p74 Raf-1 in a time (5 to 20 minutes) and concentration-dependent (10 to 100 ,mol/L) manner. Raf-1 and ERK activities were both significantly increased by most bile acids tested. Deoxycholic acid (DCA) was the best activator of ERK (3.6-fold). A dominant negative Ras (N17) construct expressed in primary hepatocytes prevented the activation of ERK by DCA. The epidermal growth factor receptor (EGFR)-specific inhibitor (AG1478) significantly inhibited (,81%) the activation of ERK by DCA. DCA rapidly (30 to 60 seconds) increased phosphorylation of the EGFR (,2-fold) and Shc (,4-fold). A dominant negative mutant of the EGFR (CD533) blocked the ability of DCA to activate ERK. In conclusion, these results show that DCA activates the Raf-1/MEK/ERK signaling cascade in primary hepatocytes primarily via an EGFR/Ras-dependent mechanism. [source] Bile acids and insulin resistance: implications for treating nonalcoholic fatty liver diseaseJOURNAL OF DIGESTIVE DISEASES, Issue 2 2009Jue WEI Nonalcoholic fatty liver disease is characterized by an accumulation of excess triglycerides in hepatocytes, and insulin resistance is now considered the fundamental operative mechanism throughout the prevalence and progression of the disease. Besides their role in dietary lipid absorption and cholesterol homeostasis, evidence has accumulated that bile acids are also signaling molecules that play two important roles in glucose and lipid metabolism: in the nuclear hormone receptors as farnesoid X receptors (FXR), as well as ligands for G-protein-coupled receptors TGR5. The activated FXR-SHP pathway regulates the enterohepatic recycling and biosynthesis of bile acids and underlies the down-regulation of hepatic fatty acid and triglyceride biosynthesis and very low density lipoprotein production mediated by sterol-regulatory element-binding protein-1c. The bile acid-TGR5-cAMP-D2 signaling pathway in human skeletal muscle in the fasting,feeding cycle increases energy expenditure and prevents obesity. Therefore, a molecular basis has been provided for a link between bile acids, lipid metabolism and glucose homeostasis, which can open novel pharmacological approaches against insulin resistance and nonalcoholic fatty liver disease. [source] Taurocholic acid-induced secretion in normal and cystic fibrosis mouse ileumJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2001J. Hardcastle Bile acids cause secretion throughout the intestinal tract and this process contributes to maintaining the fluidity of intestinal contents. In cystic fibrosis (CF) defective intestinal secretion can lead to excessive dehydration of the luminal contents and the development of clinical symptoms. This study was designed to investigate bile acid-induced secretion in mouse ileum and to determine whether this process was defective in CF. Taurocholic acid-induced secretion was monitored as a rise in short-circuit current (SCC) in ileal sheets from normal (Swiss MF1) and transgenic CF mice. Taurocholic acid increased the SCC in both intact and stripped ileal sheets from Swiss MF1 mice. This effect was due to a stimulation of electrogenic Cl, secretion as it was inhibited by Cl, -free conditions, serosal furosemide (frusemide), mucosal diphenylamine-2-carboxylic acid (DPC) and increased serosal K+ concentration, without being affected by reduced mucosal Na+ concentration. Taurocholic acid-induced secretion was inhibited by tetrodotoxin, indicating the involvement of a neural pathway, but this did not include capsaicin-sensitive afferent neurons or muscarinic cholinoreceptors. Mucosal mast cells also contributed to the response. Responses in tissues from transgenic wild-type mice were similar to those obtained with Swiss MF1 animals, but ilea from CF mice exhibited a lower basal SCC with significantly reduced secretory responses to acetylcholine and taurocholic acid. We concluded that taurocholic acid induces ileal secretion by a mechanism that entails activation of enteric nerves and degranulation of mucosal mast cells. Impaired bile acid-induced secretion in CF may contribute to luminal dehydration. [source] D10 Bile acids in cats alter cortisol metabolism in the kidneys with consequences for mineralocorticoid receptor activationJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2006L. SCHIPPER No abstract is available for this article. [source] Apoptotic cell death does not parallel other indicators of liver damage in chronic hepatitis C patientsJOURNAL OF VIRAL HEPATITIS, Issue 3 2000Rodrigues The mechanisms of hepatocyte damage and the events that lead to high rates of chronic liver disease in hepatitis C virus (HCV) infection remain unclear. Recent in vitro studies have suggested that the HCV core protein may disrupt specific signalling pathways of apoptosis. This prompted us to study patients with chronic HCV infection to: determine the extent of apoptosis in the liver; evaluate whether clinical and biochemical data are correlated with histological findings; and to investigate if apoptosis is related to the histological activity of the disease. Twelve patients with chronic hepatitis C were included in the study. Liver histology was scored by using the histological activity index (HAI) of Knodell et al. DNA fragmentation was assessed in liver tissue by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling (TUNEL) assay. Routine methods were used to determine serum markers of liver disease. Bile acids were measured in serum and liver by gas chromatography. Patients were placed, according to their HAI score, into group A (3.8 ± 0.3) or group B (7.8 ± 0.8) (P < 0.01). Liver enzymes tended to be higher in group B patients than in patients of group A. Levels of toxic bile acids in serum were greater in patients than in controls (P < 0.01). Chenodeoxycholic acid values were slightly higher in serum and liver of patients in group A. Liver biopsies with low HAI scores showed an increased rate of apoptosis (18.0 ± 4.0 apoptotic cells per field) compared to those with higher HAI scores (6.6 ± 2.1, P < 0.05) or to controls (3.5 ± 0.4, P < 0.01). Hence, less severe liver disease, associated with lower histological grades and biochemistries, as well as increased levels of chenodeoxycholic acid, induces an expanded apoptotic response. The lower apoptotic rate in advanced liver disease may be associated with the high incidence of hepatocellular dysplasia/neoplasia. [source] Duodenogastric reflux following cholecystectomy in the dog: role of antroduodenal motor functionALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 8 2001K. Nogi Background : Duodenogastric reflux has been implicated in the pathogenesis of gastric ulcer and gastritis. Duodenogastric reflux after cholecystectomy is also a possible cause of post-cholecystectomy syndrome. Aim : To investigate the role of antroduodenal motor function in increased duodenogastric reflux following cholecystectomy and the effect of trimebutine maleate (trimebutine) on the duodenogastric reflux in conscious dogs. Methods : Antropyloric and duodenal motility and bile acids content in the gastric juice were measured for 3 h during the inter-digestive state in dogs with or without cholecystectomy. Results : Bile acids content in the gastric juice of cholecystectomized dogs was significantly higher than that of non-cholecystectomized dogs. The frequency of pyloric relaxation during phase II of the migrating motor complex was significantly increased following cholecystectomy. Intravenous infusion of trimebutine inhibited both the increased duodenogastric reflux and the frequency of pyloric relaxation in the cholecystectomized dog. Conclusion : Duodenogastric reflux and frequency of pyloric relaxations were increased in cholecystectomized dogs and trimebutine suppressed both of them. These findings suggest that the increased frequency of pyloric relaxation contributes to the duodenogastric reflux following cholecystectomy. [source] Missing link identified: GpBAR1 is a neuronal bile acid receptorNEUROGASTROENTEROLOGY & MOTILITY, Issue 7 2010S. J. Keely Abstract,In addition to their classical functions in aiding the digestion and absorption of lipids, bile acids are increasingly gaining appreciation for their roles in regulating intestinal physiology. Bile acids are now widely considered as hormones that exert a wide range of physiological and pathophysiological effects both within and outside the gastrointestinal (GI) tract. The discovery of the bile acid receptor, GpBAR1, represented a major step forward in our understanding of how cells can sense and respond to bile acids. GpBAR1 is a cell surface G protein-coupled receptor expressed on adipose tissue and skeletal muscle where it has been found to be an important regulator of cellular metabolism. In a paper published in the current issue of Neurogastroenterology and Motility, Poole et al. investigated the expression and function of GpBAR1 in mouse intestine. They found the receptor to be expressed throughout the GI tract but predominantly on nerves within the myenteric and submucosal plexuses. Employing in vitro and in vivo techniques they demonstrated that activation of GpBAR1 by bile acids inhibits small and large intestinal motor function and delays intestinal transit. The effects of GpBAR1 activation are mediated through activation of cholinergic and nitrergic interneurons. The data reported by Poole et al. provides novel and exciting insights into how bile acids exert their actions in the intestine. This Editorial Viewpoint aims to further consider the potential physiological and pathophysiological implications of their findings. [source] The potent bile acid sequestrant colesevelam is not effective in cholestatic pruritus: Results of a double-blind, randomized, placebo-controlled trial,,HEPATOLOGY, Issue 4 2010Edith M. M. Kuiper Colesevelam is an anion-exchange resin with a 7-fold higher bile acid,binding capacity and fewer side effects than cholestyramine, the current first-line treatment option for cholestatic pruritus. The aim of this trial was to compare the effects of colesevelam and a placebo in patients with cholestatic pruritus. In a randomized, double-blind, investigator-initiated, multicenter trial, patients with cholestatic pruritus, both treatment-naive and previously treated, received 1875 mg of colesevelam or an identical placebo twice daily for 3 weeks. The effect on pruritus was assessed with daily visual analogue scales, quality-of-life scores, and evaluations of cutaneous scratch lesions. The predefined primary endpoint was the proportion of patients with at least a 40% reduction in pruritus visual analogue scale scores. Thirty-eight patients were included, and 35 were evaluable: 17 took colesevelam, 18 took the placebo, 22 were female, 8 were treatment-naive, 14 had primary biliary cirrhosis, and 14 had primary sclerosing cholangitis. The mean serum bile acid levels were comparable between the groups before treatment (P = 0.74), but they were significantly different after treatment (P = 0.01) in favor of patients treated with colesevelam. Thirty-six percent of patients in the colesevelam group reached the primary endpoint versus 35% in the placebo group (P = 1.0). There were no significant differences between the groups with respect to pruritus scores, quality-of-life scores, and severity of cutaneous scratch lesions. Mild side effects occurred in one colesevelam-treated patient and four placebo-treated patients. Conclusion: Although colesevelam significantly decreased serum bile acid levels, this trial was unable to demonstrate that it was more effective than a placebo in alleviating the severity of pruritus of cholestasis. (HEPATOLOGY 2010) [source] Biliary physiology and disease: Reflections of a physician-scientist,HEPATOLOGY, Issue 4 2010Gustav Paumgartner A review is presented of Gustav Paumgartner's five decades of research and practice in hepatology focusing on biliary physiology and disease. It begins with studies of the excretory function of the liver including hepatic uptake of indocyanine green, bilirubin, and bile acids. The implications of these studies for diagnosis and understanding of liver diseases are pointed out. From there, the path of scientific research leads to investigations of hepatobiliary bile acid transport and the major mechanisms of bile formation. The therapeutic effects of the hydrophilic bile acid, ursodeoxycholic acid, have greatly stimulated these studies. Although ursodeoxycholic acid therapy for dissolution of cholesterol gallstones and some other nonsurgical treatments of gallstones were largely superseded by surgical techniques, ursodeoxycholic acid is currently considered the mainstay of therapy of some chronic cholestatic liver diseases, such as primary biliary cirrhosis. The major mechanisms of action of ursodeoxycholic acid therapy in cholestatic liver diseases are discussed. An attempt is made to illustrate how scientific research can lead to advances in medical practice that help patients. (HEPATOLOGY 2010:51:1095,1106.) [source] Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of glutathione synthetic enzymes and contributes to cholestatic liver injury in mice,HEPATOLOGY, Issue 4 2010Heping Yang We previously showed that hepatic expression of glutathione (GSH) synthetic enzymes and GSH levels fell 2 weeks after bile duct ligation (BDL) in mice. This correlated with a switch in nuclear anti-oxidant response element (ARE) binding activity from nuclear factor erythroid 2,related factor 2 (Nrf2) to c,avian musculoaponeurotic fibrosarcoma (c-Maf)/V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (MafG). Our current aims were to examine whether the switch in ARE binding activity from Nrf2 to Mafs is responsible for decreased expression of GSH synthetic enzymes and the outcome of blocking this switch. Huh7 cells treated with lithocholic acid (LCA) exhibited a similar pattern of change in GSH synthetic enzyme expression as BDL mice. Nuclear protein levels of Nrf2 fell at 20 hours after LCA treatment, whereas c-Maf and MafG remained persistently induced. These changes translated to ARE nuclear binding activity. Knockdown of c-Maf or MafG individually blunted the LCA-induced decrease in Nrf2 ARE binding and increased ARE-dependent promoter activity, whereas combined knockdown was more effective. Knockdown of c-Maf or MafG individually increased the expression of GSH synthetic enzymes and raised GSH levels, and combined knockdown exerted an additive effect. Ursodeoxycholic acid (UDCA) or S-adenosylmethionine (SAMe) prevented the LCA-induced decrease in expression of GSH synthetic enzymes and promoter activity and prevented the increase in MafG and c-Maf levels. In vivo knockdown of the Maf genes protected against the decrease in GSH enzyme expression, GSH level, and liver injury after BDL. Conclusion: Toxic bile acid induces a switch from Nrf2 to c-Maf/MafG ARE nuclear binding, which leads to decreased expression of GSH synthetic enzymes and GSH levels and contributes to liver injury during BDL. UDCA and SAMe treatment targets this switch. (HEPATOLOGY 2010.) [source] Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver,HEPATOLOGY, Issue 1 2007Jiansheng Huang The orphan receptor Small Heterodimer Partner (SHP, NROB2) regulates metabolic pathways, including hepatic bile acid, lipid, and glucose homeostasis. We reported that SHP- deletion in leptin-deficient OB,/, mice increases insulin sensitivity, and prevents the development of fatty liver. The prevention of steatosis in OB,/,/SHP,/, double mutants is not due to decreased body weight but is associated with increased hepatic very-low-density lipoprotein (VLDL) secretion and elevated microsomal triglyceride transfer protein (MTP) mRNA and protein levels. SHP represses the transactivation of the MTP promoter and the induction of MTP mRNA by LRH-1 in hepatocytes. Adenoviral overexpression of SHP inhibits MTP activity as well as VLDL-apoB protein secretion, and RNAi knockdown of SHP exhibits opposite effects. The expression of SHP in induced in fatty livers of OB,/, mice and other genetic or dietary models of steatosis, and acute overexpression of SHP by adenovirus, result in rapid accumulation of neutral lipids in hepatocytes. In addition, the pathways for hepatic lipid uptake and lipogenic program are also downregulated in OB,/,/SHP,/, mice, which may contribute to the decreased hepatic lipid content. Conclusion: These studies demonstrate that SHP regulates the development of fatty liver by modulating hepatic lipid export, uptake, and synthesis, and that the improved peripheral insulin sensitivity in OB,/,/SHP,/, mice is associated with decreased hepatic steatosis. (HEPATOLOGY 2007.) [source] Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice,HEPATOLOGY, Issue 4 2007Megan H. Keane The marked deficiency of peroxisomal organelle assembly in the PEX2,/, mouse model for Zellweger syndrome provides a unique opportunity to developmentally and biochemically characterize hepatic disease progression and bile acid products. The postnatal survival of homozygous mutants enabled us to evaluate the response to bile acid replenishment in this disease state. PEX2 mutant liver has severe but transient intrahepatic cholestasis that abates in the early postnatal period and progresses to steatohepatitis by postnatal day 36. We confirmed the expected reduction of mature C24 bile acids, accumulation of C27,bile acid intermediates, and low total bile acid level in liver and bile from these mutant mice. Treating the PEX2,/, mice with bile acids prolonged postnatal survival, alleviated intrahepatic cholestasis and intestinal malabsorption, reduced C27,bile acid intermediate production, and prevented older mutants from developing severe steatohepatitis. However, this therapy exacerbated the degree of hepatic steatosis and worsened the already severe mitochondrial and cellular damage in peroxisome-deficient liver. Both untreated and bile acid,fed PEX2,/, mice accumulated high levels of predominantly unconjugated bile acids in plasma because of altered expression of hepatocyte bile acid transporters. Significant amounts of unconjugated bile acids were also found in the liver and bile of PEX2 mutants, indicating a generalized defect in bile acid conjugation. Conclusion: Peroxisome deficiency widely disturbs bile acid homeostasis and hepatic functioning in mice, and the high sensitivity of the peroxisome-deficient liver to bile acid toxicity limits the effectiveness of bile acid therapy for preventing hepatic disease. (HEPATOLOGY 2007;45:982,997.) [source] ,Klotho: A new kid on the bile acid biosynthesis block,HEPATOLOGY, Issue 1 2006Marco Arrese We have generated a line of mutant mouse that lacks ,Klotho, a protein that structurally resembles Klotho. The synthesis and excretion of bile acids were found to be dramatically elevated in these mutants, and the expression of 2 key bile acid synthase genes, cholesterol 7,-hydroxylase (Cyp7a1) and sterol 12,- hydroxylase (Cyp8b1), was strongly upregulated. Nuclear receptor pathways and the enterohepatic circulation, which regulates bile acid synthesis, seemed to be largely intact; however, bile acid,dependent induction of the small heterodimer partner (SHP) NR0B2, a common negative regulator of Cyp7a1 and Cyp8b1, was significantly attenuated. The expression of Cyp7a1 and Cyp8b1 is known to be repressed by dietary bile acids via both SHP-dependent and -independent regulations. Interestingly, the suppression of Cyp7a1 expression by dietary bile acids was impaired, whereas that of Cyp8b1 expression was not substantially altered in ,klotho,/, mice. Therefore, ,Klotho may stand as a novel contributor to Cyp7a1 -selective regulation. Additionally, ,Klotho-knockout mice exhibit resistance to gallstone formation, which suggests the potential future clinical relevance of the ,Klotho system. [source] Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-,1,induced apoptosis in rat hepatocytes,HEPATOLOGY, Issue 4 2005Susana Solá Ursodeoxycholic acid (UDCA) inhibits classical mitochondrial pathways of apoptosis by either directly stabilizing mitochondrial membranes or modulating specific upstream targets. Furthermore, UDCA regulates apoptosis-related genes from transforming growth factor ,1 (TGF-,1),induced hepatocyte apoptosis by a nuclear steroid receptor (NSR),dependent mechanism. In this study, we further investigated the potential role of the glucocorticoid receptor (GR) in the antiapoptotic function of UDCA. Our results with short interference RNA (siRNA) technology confirmed that UDCA significantly reduces TGF-,1,induced apoptosis of primary rat hepatocytes through a GR-dependent effect. Immunoprecipitation assays and confocal microscopy showed that UDCA enhanced free GR levels with subsequent GR nuclear translocation. Interestingly, when a carboxy-terminus deleted form of GR was used, UDCA no longer increased free GR and/or GR translocation, nor did it protect against TGF-,1,induced apoptosis. In co-transfection experiments with GR response element reporter and overexpression constructs, UDCA did not enhance the transactivation of GR with TGF-,1. Finally, using a flourescently labeled UDCA molecule, the bile acid appeared diffuse in the cytosol but was aggregated in the nucleus of hepatocytes. Both siRNA assays and transfection experiments with either wild-type or mutant forms of GR showed that nuclear trafficking occurs through a GR-dependent mechanism. In conclusion, these results further clarify the antiapoptotic mechanism(s) of UDCA and suggest that GR is crucial for the nuclear translocation of this bile acid for reducing apoptosis. (HEPATOLOGY 2005;42:925,934.) [source] Secretin activation of the apical Na+ -dependent bile acid transporter is associated with cholehepatic shunting in rats,HEPATOLOGY, Issue 5 2005Gianfranco Alpini The role of the cholangiocyte apical Na+ -dependent bile acid transporter (ASBT) in bile formation is unknown. Bile acid absorption by bile ducts results in cholehepatic shunting, a pathway that amplifies the canalicular osmotic effects of bile acids. We tested in isolated cholangiocytes if secretin enhances ASBT translocation to the apical membrane from latent preexisting intracellular stores. In vivo, in bile duct,ligated rats, we tested if increased ASBT activity (induced by secretin pretreatment) results in cholehepatic shunting of bile acids. We determined the increment in taurocholate-dependent bile flow and biliary lipid secretion and taurocholate (TC) biliary transit time during high ASBT activity. Secretin stimulated colchicine-sensitive ASBT translocation to the cholangiocyte plasma membrane and 3H-TC uptake in purified cholangiocytes. Consistent with increased ASBT promoting cholehepatic shunting, with secretin pretreatment, we found TC induced greater-than-expected biliary lipid secretion and bile flow and there was a prolongation of the TC biliary transit time. Colchicine ablated secretin pretreatment-dependent bile acid,induced choleresis, increased biliary lipid secretion, and the prolongation of the TC biliary transit. In conclusion, secretin stimulates cholehepatic shunting of conjugated bile acids and is associated with increased cholangiocyte apical membrane ASBT. Bile acid transport by cholangiocyte ASBT can contribute to hepatobiliary secretion in vivo. (HEPATOLOGY 2005.) [source] Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice,HEPATOLOGY, Issue 1 2005Hirdesh Uppal Efficient detoxification of bile acids is necessary to avoid pathological conditions such as cholestatic liver damage and colon cancer. The orphan nuclear receptors PXR and CAR have been proposed to play an important role in the detoxification of xeno- and endo-biotics by regulating the expression of detoxifying enzymes and transporters. In this report, we showed that the combined loss of PXR and CAR resulted in a significantly heightened sensitivity to bile acid toxicity in a sex-sensitive manner. A regimen of lithocholic acid treatment, which was tolerated by wild-type and PXR null mice, caused a marked accumulation of serum bile acids and histological liver damage as well as an increased hepatic lipid deposition in double knockout males. The increased sensitivity in males was associated with genotype-specific suppression of bile acid transporters and loss of bile acid,mediated downregulation of small heterodimer partner, whereas the transporter suppression was modest or absent in females. The double knockout mice also exhibited gene- and tissue-specific dysregulation of PXR and CAR target genes in response to PXR and CAR agonists. In conclusion, although the cross-regulation of target genes by PXR and CAR has been proposed, the current study represents in vivo evidence of the combined loss of both receptors causing a unique pattern of gene regulation that can be translated into physiological events such as sensitivity to toxic bile acids. (HEPATOLOGY 2005;41:168,176.) [source] The nuclear bile acid receptor FXR as a novel therapeutic target in cholestatic liver diseases: Hype or hope?HEPATOLOGY, Issue 1 2004Michael Trauner M.D. Farnesoid X receptor (FXR) is a bile acid,activated transcription factor that is a member of the nuclear hormone receptor superfamily. FXR-null mice exhibit a phenotype similar to Byler disease, an inherited cholestatic liver disorder. In the liver, activation of FXR induces transcription of transporter genes involved in promoting bile acid clearance and represses genes involved in bile acid biosynthesis. We investigated whether the synthetic FXR agonist GW4064 could protect against cholestatic liver damage in rat models of extrahepatic and intrahepatic cholestasis. In the bile duct ligation and alpha-naphthylisothiocyanate models of cholestasis, GW4064 treatment resulted in significant reductions in serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, as well as other markers of liver damage. Rats that received GW4064 treatment also had decreased incidence and extent of necrosis, decreased inflammatory cell infiltration, and decreased bile duct proliferation. Analysis of gene expression in livers from GW4064-treated cholestatic rats revealed decreased expression of bile acid biosynthetic genes and increased expression of genes involved in bile acid transport, including the phospholipid flippase MDR2. The hepatoprotection seen in these animal models by the synthetic FXR agonist suggests FXR agonists may be useful in the treatment of cholestatic liver disease. [source] Prevention of diet-induced fatty liver in experimental animals by the oral administration of a fatty acid bile acid conjugate (FABAC)HEPATOLOGY, Issue 2 2003Tuvia Gilat Fatty acid bile acid conjugates (FABACs) are a new family of synthetic molecules designed to solubilize biliary cholesterol. They were shown to prevent and dissolve cholesterol gallstones in inbred C57L/J mice fed a lithogenic, high-fat diet (HFD). In these mice, fatty liver was observed in the controls but not in the FABAC-treated ones. The present study was designed to study the effect of FABAC (arachidyl-amido-cholanoic acid) on diet-induced fatty liver in rats, hamsters, and mice. The fatty liver score (on a scale of 0-4 by light microscopy) was 4.0 in control hamsters and 0.3 in the FABAC-fed hamsters (P < .001). In mice it was 1.5 and 0.4, respectively (P < .01). The lipid/protein ratio in the liver was 1.3 ± 0.44 (mg lipid/mg protein) in control rats and 0.66 ± 0.04 in the FABAC group (P = .001) after 14 days. In hamsters it was 1.41 ± 0.27 and 1.11 ± 0.20, respectively (P = .03), after 21 days. In Imperial Charles River (ICR) mice the ratio was 0.34 ± 0.10 and 0.17 ± 0.07 (P = .03), respectively, after 24 days. Liver fat concentration, measured as mg lipid/g liver tissue, decreased similarly by FABAC feeding. The decrease in liver fat affected mainly the triglyceride levels. FABAC-fed animals gained weight similarly to the controls. Triglyceride absorption was unaffected by FABAC supplementation. In conclusion, oral FABAC therapy prevents/reduces the development of fatty liver in animals consuming a HFD. [source] Fibrate for treatment of primary biliary cirrhosisHEPATOLOGY RESEARCH, Issue 2007Shinji Iwasaki Recent studies of the effectiveness of ursodeoxycholic acid (UDCA) therapy in patients with primary biliary cirrhosis (PBC) reported that UDCA therapy did not necessarily stop the progression of liver fibrosis in all patients, even those with early stage PBC. Thus, there is a need for more effective treatments that could prevent asymptomatic PBC from progressing to the icteric stage. Bezafibrate is effective in approximately two-thirds of non-icteric patients who have not shown a complete response to UDCA. Serum bilirubin, aspartate aminotransferase and ,-guanosine 5,-triphosphate levelswere significantly lower in patients who responded to additional bezafibrate on univariate analysis. The putative mechanism by which bezafibrate acts in cholestasis is by increasing phospholipid output into bile, which forms micelles with the hydrophobic bile acid that reduces its toxicity. [source] Melatonin protects against taurolithocholic-induced oxidative stress in rat liverJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010Lorena Fuentes-Broto Abstract Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl3 and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA,+,4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA,+,4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. J. Cell. Biochem. 110: 1219,1225, 2010. Published 2010 Wiley-Liss, Inc. [source] 17,-estradiol prevents cytotoxicity from hydrophobic bile acids in HepG2 and WRL-68 cell culturesJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 5 2006Matteo Ricchi Abstract Background:, Epidemiological and clinical studies suggest the possibility that estrogens might have a cytoprotective effect on the liver. The aim of the present study was to test the hypothesis that 17,-estradiol (E2) prevents hepatocellular damage induced by deoxycholic acid (DCA), a hydrophobic bile acid. Methods:, HepG2 cells were exposed for 24 h to DCA (350 µmol/L). Cell viability, aspartate aminotransferase and lactate dehydrogenase activity and apoptosis were measured as indices of cell toxicity. The effect of DCA was compared to that observed using either a hydrophilic bile acid, ursodeoxycholic acid (UDCA; 100 µmol/L), or E2 at different concentrations (1 nmol/L, 10 nmol/L, 50 nmol/L and 50 µmol/L) or mixtures of E2/DCA or UDCA/DCA. The same experiments were performed using WRL-68 cells that, at variance with HepG2, express a higher level of nuclear estrogen receptor. Results:, High concentrations of E2 and UDCA prevented DCA-induced decrease in cell viability, increase in enzyme activity and apoptosis evaluated both by 4,,6-diamidino-2-phenylindole dihydrochloride (DAPI) and TdT-mediated dUTP nick-end labeling (TUNEL) assays. In addition, DCA-related apoptosis, assessed by caspase activity, was also prevented by E2 (P < 0.01) in physiological (1,10 nmol/L) doses. The cytoprotective effects of E2 and UDCA was also observed in the WRL-68 cell line. Conclusions:, 17,-Estradiol prevents DCA-induced cell damage in HepG2 and WRL-68 cell lines to an extent comparable to UDCA. The hypothesis that the protective effect of E2 may be mediated by a mechanism that is nuclear estrogen receptor independent, deserves further verification. [source] Bile acid sequestrants based on cationic dextran hydrogel microspheres.JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2001Abstract Cationic dextran hydrogel microspheres with pendant quaternary ammonium groups having alkyl substituents (C2,C12) at quaternary nitrogen were synthesized. The in vitro sorption of sodium salts of four bile acids (glycocholic, cholic, taurocholic, and deoxycholic acids) with these hydrogels was studied as a function of substituent alkyl chain length and bile acid hydrophobicity. Sorption experiments were performed in phosphate buffer solutions (pH 7.4) containing one bile salt (individual sorption) or mixtures of several bile salts (competitive sorption). Parameters for individual sorption were calculated taking into consideration the stoichiometric and cooperative binding of bile salts to oppositely charged polymer hydrogels. The results show that the increase in the length of the alkyl chain of the substituent leads to an increase in both ionization constant K0 and overall stability constant of binding K, but decreases the cooperativity parameter u. The competitive sorption studies indicate that the hydrogels display a good affinity for both dihydroxylic and trihydroxylic bile salts. The molar ratio of maximum amounts bound for the two types of bile acid is 2 to 1, which is much lower than those reported for other cationic polymers recommended as bile acid sequestrants. The binding constants for the sorption of bile salts by some dextran hydrogels are 20,30 times higher than those obtained for cholestyramine under similar sorption conditions. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:681,689, 2001 [source] Orientation-Selective Incorporation of Transmembrane F0F1 ATP Synthase Complex from Micrococcus luteus in Polymer-Supported MembranesMACROMOLECULAR BIOSCIENCE, Issue 11 2008Murat Tutus Abstract We report the vectorial incorporation of a highly asymmetric F0F1 ATP synthase complex from Micrococcus luteus into polymer-supported membranes. Dynamic light scattering and cryo electron microscopy confirm that the use of weak surfactants (bile acid) allows for the non-disruptive protein incorporation into lipid vesicles. Spreading of vesicles with ATP synthase onto a cellulose support results in a homogeneous distribution of proteins, in contrast to a patchy image observed on bare glass slides. The orientation of ATP synthase can be identified using an antibody to the ATP binding site as well as from topographic profiles of the surface. The method to "align" transmembrane proteins in supported membranes would open a possibility to quantify protein functions in biomimetic model systems. [source] Lithocholic-acid-containing poly(ester,anhydride)sPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11-12 2003Michal Y. Krasko Abstract New degradable poly(ester-anhydride)s were prepared by melt polycondensation of poly(sebacic acid) (PSA), transesterified by different amounts (30,90%) of lithocholic acid (LCA), a natural hydroxy bile acid. Transesterification of PSA is a one-pot reaction that starts with a high-molecular-weight polymer based on anhydride bonds and yields polymer based on random anhydride,ester bonds. A systematic study of the synthesis, characterization, degradation in vitro, drug release, and stability of these polymers was performed. Polymers with molecular weights (Mw) in the range of 12,000,115,000 and melting points in the range of 55,112,°C were obtained for 30,90% of lithocholic acid content. NMR and IR spectroscopic analyses indicate the formation of ester bonds in the polyanhydride backbone. The experimental results fit the calculated molecular weight, with the highest Mw obtained for a 4:6 PSA,LCA ratio. The study shows that some of these new degradable copolymers can be potentially used as carriers for the controlled release of drugs. Copyright © 2003 John Wiley & Sons, Ltd. [source] Effect of Hepatic Artery Flow on Bile Secretory Function After Cold IschemiaAMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2003David P. Foley These studies evaluated the influence of hepatic arterial flow on biliary secretion after cold ischemia. Preparation of livers for transplantation or hepatic support impairs biliary secretion. The earliest indication of cold preservation injury during reperfusion is circulatory function. Arterial flow at this time may be critical for bile secretion. Porcine livers were isolated, maintained at 4° for 2 h and connected in an extracorporeal circuit to an anesthetized normal pig. The extracorporeal livers were perfused either by both the hepatic artery and portal vein (dual) or by the portal vein alone (single). Incremental doses of sodium taurocholate were infused into the portal vein of both the dual and single perfused livers, and the bile secretion was compared. Most endogenous bile acids are lost during hepatic isolation. After supplementation, the biliary secretion of phosphatidyl choline and cholesterol was significantly better in the dual than single vessel-perfused livers; however, no difference was seen in bilirubin output. Single perfused livers were completely unable to increase biliary cholesterol in response to bile acid. The dependence of bile cholesterol secretion on arterial flow indicates the importance of this flow to the detoxification of compounds dependent on phosphatidyl choline transport during early transplantation. [source] |