| |||
Bilateral Symmetry (bilateral + symmetry)
Selected AbstractsCell organization of barb ridges in regenerating feathers of the quail: implications of the elongation of barb ridges for the evolution and diversification of feathersACTA ZOOLOGICA, Issue 2 2007L. Alibardi Abstract This ultrastructural study on the regenerating feathers of quail describes the cellular organization of the barb ridges responsible for the ramification of adult feathers. Bilateral symmetry of the barb ridges determines the organization of feather cells into feather branching. The length of the barb ridges, derived from the number of cells associated to form the barbule plates, determines the length of the barbule branching. Long chains of barb cells form long barbs that branch from the rachis with an increase of feather size. Supportive cells function as spacers between the barbule cells. New cells derive from stem cells localized in the collar region of the feather follicle, as indicated from the re-organization of collar cells into barb ridges (a morphogenetic process inherited from that of embryonic feathers), production of an embryonic type of keratin (feather keratin), permanence of periderm granules (typical embryonic organelles) in barb vane ridge cells. Variations in the process of barb ridge morphogenesis allow the fusion of ridges into a rachis. The differentiation of hooklets contributes to the origin of planar feathers. Separation between rachis and merging barb ridges is by supportive cells, derived from the marginal plates of the barb ridges. Speculations on the evolution and diversification of feathers are presented. [source] Closed-form Blending of Local SymmetriesCOMPUTER GRAPHICS FORUM, Issue 5 2010Deboshmita Ghosh Abstract We present a closed-form solution for the symmetrization problem, solving for the optimal deformation that reconciles a set of local bilateral symmetries. Given as input a set of point-pairs which should be symmetric, we first compute for each local neighborhood a transformation which would produce an approximate bilateral symmetry. We then solve for a single global symmetry which includes all of these local symmetries, while minimizing the deformation within each local neighborhood. Our main motivation is the symmetrization of digitized fossils, which are often deformed by a combination of compression and bending. In addition, we use the technique to symmetrize articulated models. [source] ON THE ADAPTIVE ACCURACY OF DIRECTIONAL ASYMMETRY IN INSECT WING SIZEEVOLUTION, Issue 11 2008Christophe Pélabon Subtle left,right biases are often observed in organisms with an overall bilateral symmetry. The evolutionary significance of these directional asymmetries remains uncertain, however, and scenarios of both developmental constraints and adaptation have been suggested. Reviewing the literature on asymmetry in insect wings, we analyze patterns of directional asymmetry in wing size to evaluate the possible adaptive significance of this character. We found that directional asymmetry in wing size is widespread among insects, with left- and right-biased asymmetries commonly observed. The direction of the asymmetry does not appear to be evolutionarily conserved above the species level. Overall, we argue that the very small magnitude of directional asymmetry, 0.7% of the wing size on average, associated with an extremely imprecise expression, precludes directional asymmetry from playing any major adaptive role. [source] Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensisEVOLUTION AND DEVELOPMENT, Issue 5 2009Eduardo Moreno SUMMARY Genes of the Hox cluster encode for transcriptional regulators that show collinear expression along the anteroposterior (AP) body axis in all bilateral animals. However, it is still unclear when in the evolutionary history of bilaterians the Hox system first conferred positional identity along the AP-axis. Recent molecular phylogenies have convincingly shown that the acoel flatworms, traditionally classified within the Platyhelminthes, are the sister group of the remaining Bilateria, branching out before the common ancestor of protostomes, and deuterostomes (the so-called PDA). This key phylogenetic position offers the opportunity to search for the presence and early role of Hox cluster genes to pattern the AP axis in acoels. Here, we report on the cloning, genomic arrangement, and expression domains of Hox genes in Symsagittifera roscoffensis. Three Hox genes were detected: one from each of the major groups of Hox genes, which are anterior, central, and posterior. In bacterial artificial chromosome cloning, sequencing, and chromosomal fluorescence in situ hybridization, Hox genes were not observed as being clustered in a unique genomic region. Nevertheless, despite its dispersion within the genome, Hox genes are expressed in nested domains along the AP axis in the juvenile worm. The basic set of Hox genes in acoels and their coarse nested spatial deployment might be the first indicators of the role of Hox genes in the evolution of bilateral symmetry and AP positional identity from a hypothetical radial ancestor. [source] The role of visible persistence for perception of visual bilateral symmetry1JAPANESE PSYCHOLOGICAL RESEARCH, Issue 4 2005RYOSUKE NIIMI Abstract:, Although the detection of visual bilateral symmetry has been claimed to be highly efficient, the possible involvement and function of visual memory in such efficient mechanisms has rarely been examined. We hypothesized that symmetry perception is rapid, as it can be achieved from rapidly decaying information of visible persistence. To test this hypothesis, we employed a temporal integration paradigm. A symmetric dot pattern was randomly divided into two asymmetric patterns and presented successively with a blank screen presented between patterns. Observers could detect symmetry when the two patterns were presented close in time (Experiment 1), indicating that observers perceived symmetry presumably utilizing visible persistence. In addition, the inverse-intensity effect of visible persistence (Di Lollo & Bischof, 1995) was evident in our temporal integration task of symmetry (Experiment 2). The results of the current study clearly demonstrate that the detection of symmetry can be achieved based on the visible persistence. The large capacity and high spatial precision of visible persistence might be adequate for the rapid and spatially global encoding of visual symmetry. [source] Comparative aspects of the inner root sheath in adult and developing hairs of mammals in relation to the evolution of hairsJOURNAL OF ANATOMY, Issue 3 2004Lorenzo AlibardiArticle first published online: 17 SEP 200 Abstract The inner root sheath (IRS) allows the exit of hairs through the epidermal surface. The fine structure of monotreme and marsupial IRS and trichohyalin is not known. Using electron microscopy and immunocytochemistry, the localization of trichohyalin and transglutaminase have been studied in monotreme and marsupial hairs, and compared with trichohyalin localization in placental hairs. Trichohyalin in all mammalian species studied here is recognized by a polyclonal antibody against sheep trichohyalin. This generalized immunoreactivity suggests that common epitopes are present in trichohyalin across mammals. In differentiating IRS cells, trichohyalin granules of variable dimensions are composed of an immunolabelled amorphous matrix associated with a network of 10,12-nm-thick keratin filaments. Transglutaminase labelling is present among keratin bundles and trichohyalin granules, and in condensed nuclei of terminally differentiating cells of the inner root sheath. The IRS in monotreme hairs is multistratified but lacks a distinguishable Henle layer. Cornification of IRS determines the sculpturing of the fibre cuticle and later shedding from the follicle for the exit of the hair fibre on the epidermal surface. It is hypothesized that the stratification of IRS in Henle, Huxley and IRS cuticle layers is derived from a simpler organization, like that present in the IRS of monotremes. The IRS is regarded as a localized shedding/sloughing layer needed for the exit of hairs without injury to the epidermis. The formation of the IRS during the evolution of mammalian epidermis allowed the physiological exit of hairs produced inside the skin. The peculiar morphogenesis of hairs in possible primitive skins, such as those of the monotremes (mammals with some reptilian characteristics) or the tails of some rodents (a scaled skin), may elucidate the evolution of hairs. In monotreme and rodent tail skin, the dermal papilla remains localized on the proximal side of the hair peg and forms a hair placode with bilateral symmetry. The papilla is progressively surrounded by the down-growing hair peg until a dermal papilla with radial symmetry is formed. It is speculated that the progressive reduction of the extended dermal papilla of reptilian scales into small and deep papillae of therapsid reptiles produced hairs in mammals. [source] Development of pharyngeal arch arteries in early mouse embryoJOURNAL OF ANATOMY, Issue 1 2002Tamiko Hiruma Abstract The formation and transformation of the pharyngeal arch arteries in the mouse embryo, from 8.5 to 13 days of gestation (DG), was observed using scanning electron microscopy of vascular casts and graphic reconstruction of 1-µm serial epoxy-resin sections. Late in 8.5,9DG (12 somites), the paired ventral aortae were connected to the dorsal aortae via a loop anterior to the foregut which we call the ,primitive aortic arch', as in the chick embryo. The primitive aortic arch extended cranio-caudally to be transformed into the primitive internal carotid artery, which in turn gave rise to the primitive maxillary artery and the arteries supplying the brain. The second pharyngeal arch artery (PAA) appeared late in 9,9.5DG (16,17 somites), and the ventral aorta bent dorsolaterally to form the first PAA anterior to the first pharyngeal pouch by early in 9.5,10DG (21,23 somites). The third PAA appeared early in 9.5,10DG (21,23 somites), the fourth late in 9.5,10DG (27,29 somites), and the sixth at 10DG (31,34 somites). By 10.5DG (35,39 somites), the first and second PAAs had been transformed into other arteries, and the third, fourth and sixth PAAs had developed well, though the PAA system still exhibited bilateral symmetry. By 13DG, the right sixth PAA had disappeared, and the remaining PAAs formed an aortic-arch system that was almost of the adult type. [source] Lateral plate asymmetry, diet and parasitism in threespine sticklebackJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2001T. E. Reimchen Individuals with random left,right departures from bilateral symmetry are predicted to exhibit fitness reduction including increased parasitism. In an insular lake population of stickleback (Gasterosteus aculeatus) from the Queen Charlotte Islands, Western Canada, phenotypes with high or low number of lateral bony plates exhibited increased plate asymmetry relative to modal phenotypes. Asymmetric lateral plate phenotypes had increased prevalence and to a lesser extent intensity of parasitism relative to symmetric individuals, suggesting that differences in genetic resistance to pathogens contributed to unequal parasitism. The effect occurred mainly in the larger adults and during the warmest season, which may be due to the high metabolic costs incurred during the summer breeding season. Dietary differences between symmetric and asymmetric phenotypes were also detected and could contribute to unequal infection rates by mediating exposure to infected prey items. Our study, which is one of the first long-term field assessments of asymmetry and parasitism, yields results that are consistent with studies linking asymmetry to reduced fitness and indicate that lateral plate asymmetry can be an indicator of poor individual quality, despite its apparent directionality. [source] Fluorenyl based syndiotactic specific metallocene catalysts structural features, origin of syndiospecificityMACROMOLECULAR SYMPOSIA, Issue 1 2004Abbas Razavi Abstract The stereochemistry of propylene insertion/propagation reactions with a variety of Cs symmetric fluorenyl- containing single site catalysts is discussed. Our recent results indicate that independent of the chemical composition of the ancillary ligand fragments, or nature of the transition metal, active sites with local Cs symmetry and enantiotopic coordination positions behave syndioselectively in the general context of chain migratory insertion mechanism. Perfect bilateral symmetry neither exists nor is required in these processes. In this context the mechanism of syndiospecific polymerization is revisited by taking into account the structural characteristics and catalytic behavior of the original metallocene based (,5 -C5H4 -CMe2 -,5 -C13H8) MCl2/ MAO; M = Zr (1), Hf (2) catalyst systems and new syndiotactic specific systems including (,5 -C5H4 -CPh2-,5-3,6-di-tBut-C13H6)ZrCl2 (3), ,1,,5 -(,Me2Si)(3,6-di-tBut-Flu)(t-ButN)MCl2/ MAO; M =Ti (4), Zr (5) and ,1,,5 -(,Me2Si)(2,7-di-tBut-Flu)(t-ButN)MCl2/ MAO; M = Ti (6), Zr (7). [source] Variation, Natural Selection, and Information Content , A SimulationCHEMISTRY & BIODIVERSITY, Issue 10 2007Bernard Testa Abstract In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms that propel biological evolution. Variation implies changes in the gene pool of a population, enlarging the genetic variability from which natural selection can choose. But in the absence of natural selection, variation causes dissipation and randomization. Natural selection, in contrast, constrains this variability by decreasing the survival and fertility of the less-adapted organisms. The objective of this study is to propose a highly simplified simulation of variation and natural selection, and to relate the observed evolutionary changes in a population to its information content. The model involves an imaginary population of individuals. A quantifiable character allows the individuals to be categorized into bins. The distribution of bins (a histogram) was assumed to be Gaussian. The content of each bin was calculated after one to twelve cycles, each cycle spanning N generations (N being undefined). In a first study, selection was simulated in the absence of variation. This was modeled by assuming a differential fertility factor F that increased linearly from the lower bins (F<1.00) to the higher bins (F>1.00). The fertility factor was applied as a multiplication factor during each cycle. Several ranges of fertility were investigated. The resulting histograms became skewed to the right. In a second study, variation was simulated in the absence of selection. This was modeled by assuming that during each cycle each bin lost a fixed percentage of its content (variation factor Y) to its two adjacent bins. The resulting histograms became broader and flatter, while retaining their bilateral symmetry. Different values of Y were monitored. In a third study, various values of F and Y were combined. Our model allows the straightforward application of Shannon's equation and the calculation of a Shannon -entropy (SE) values for each histogram. Natural selection was, thus, shown to result in a progressive decrease in SE as a function of F. In other words, natural selection, when acting alone, progressively increased the information content of the population. In contrast, variation resulted in a progressive increase in SE as a function of Y. In other words, variation acting alone progressively decreased the information content of a population. When both factors, F and Y, were applied simultaneously, their relative weight determined the progressive change in SE. [source] Clinical and molecular aspects of aniridiaCLINICAL GENETICS, Issue 5 2010H Kokotas Kokotas H, Petersen MB. Clinical and molecular aspects of aniridia. Aniridia is a severe, congenital ocular malformation inherited in an autosomal-dominant fashion with high penetrance and variable expression. Eye morphogenesis in humans involves a molecular genetic cascade in which a number of developmental genes interact in a highly organized process during the embryonic period to produce functional ocular structures. Among these genes, paired box gene 6 (PAX6) has an essential role as it encodes a phylogenetically conserved transcription factor almost universally employed for eye formation in animals with bilateral symmetry, despite widely different embryological origins. To direct eye development, PAX6 regulates the tissue-specific expression of diverse molecules, hormones, and structural proteins. In humans, PAX6 is located in chromosome 11p13, and its mutations lead to a variety of hereditary ocular malformations of the anterior and posterior segment, among which aniridia and most probably foveal hypoplasia are the major signs. Aniridia occurs due to decreased dosage of the PAX6 gene and exists in both sporadic and familial forms. The mutations are scattered throughout the gene and the vast majority of those reported so far are nonsense mutations, frameshift mutations, or splicing errors that are predicted to cause pre-mature truncation of the PAX6 protein, causing haploinsufficiency. Here we review the data regarding the mechanisms and the mutations that relate to aniridia. [source] |