Bisphosphonate Zoledronic Acid (bisphosphonate + zoledronic_acid)

Distribution by Scientific Domains


Selected Abstracts


Early Detection of Bone Metastases in a Murine Model Using Fluorescent Human Breast Cancer Cells: Application to the Use of the Bisphosphonate Zoledronic Acid in the Treatment of Osteolytic Lesions

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2001
Olivier Peyruchaud
Abstract A very common metastatic site for human breast cancer is bone. The traditional bone metastasis model requires human MDA-MB-231 breast carcinoma cell inoculation into the left heart ventricle of nude mice. MDA-MB-231 cells usually develop osteolytic lesions 3,4 weeks after intracardiac inoculation in these animals. Here, we report a new approach to study the formation of bone metastasis in animals using breast carcinoma cells expressing the bioluminescent jellyfish protein (green fluorescent protein [GFP]). We first established a subclone of MDA-MB-231 cells by repeated in vivo passages in bone using the heart injection model. On stable transfection of this subclone with an expression vector for GFP and subsequent inoculation of GFP-expressing tumor cells (B02/GFP.2) in the mouse tail vein, B02/GFP.2 cells displayed a unique predilection for dissemination to bone. Externally fluorescence imaging of live animals allowed the detection of fluorescent bone metastases approximately 1 week before the occurrence of radiologically distinctive osteolytic lesions. The number, size, and intensity of fluorescent bone metastases increased progressively with time and was indicative of breast cancer cell progression within bone. Histological examination of fluorescent long bones from B02/GFP.2-bearing mice revealed the occurrence of profound bone destruction. Treatment of B02/GFP.2-bearing mice with the bisphosphonate zoledronic acid markedly inhibited the progression of established osteolytic lesions and the expansion of breast cancer cells within bone. Overall, this new bone metastasis model of breast cancer combining both fluorescence imaging and radiography should provide an invaluable tool to study the effectiveness of pharmaceutical agents that could suppress cancer colonization in bone. [source]


Anticancer effects of zoledronic acid against human osteosarcoma cells

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2006
B. Kubista
Abstract Based on neoadjuvant chemotherapy, the prognosis of osteosarcoma patients has improved dramatically. However, due to therapy resistance in patient subgroups, the development of new treatment strategies is still of utmost importance. The aim of our study was to test the effects of the nitrogen-containing bisphosphonate zoledronic acid (ZOL) on osteosarcoma cell lines (N,=,9). Exposure to ZOL at low micromolar concentrations induced a dose- and time-dependent block of DNA synthesis and cell cycle progression followed by microfilament breakdown and apoptosis induction. The ZOL-induced cell cycle accumulation in S phase was accompanied by significant changes in the expression of cyclins and cyclin-dependent kinase inhibitors with a prominent loss of cyclin E and D1. ZOL not only inhibited growth but also migration of osteosarcoma cells. The mevalonate pathway intermediary geranyl-geraniol (GGOH) but not farnesol (FOH) significantly inhibited the anticancer effects of ZOL against osteosarcoma cells. Correspondingly, ZOL sensitivity correlated with the blockade of protein geranylgeranylation indicated by unprenylated Rap1. Overexpression of even high levels of P-glycoprotein, as frequently present in therapy-resistant osteosarcomas, did not impair the anticancer activity of ZOL. Summarizing, our data suggest that ZOL, which selectively accumulates in the bone, represents a promising agent to improve osteosarcoma therapy. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source]


Zoledronic acid improves femoral head sphericity in a rat model of perthes disease

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2005
David G. Little
Abstract We hypothesized that the bisphosphonate zoledronic acid (ZA) could improve femoral head sphericity in Perthes disease by changing the balance between bone resorption and new bone formation. This study tests the effect of ZA in an established model of Perthes disease, the spontaneously hypertensive rat (SHR). One hundred and twenty 4-week old SHR rats were divided into three groups of 40: saline monthly, 0.015 mg/kg ZA weekly, or 0.05 mg/kg ZA monthly. At 15 weeks DXA measurements documented that femoral head BMD was increased by 18% in ZA weekly and 21% in ZA monthly compared to controls (p < 0.01). Femoral head sphericity in animals with osteonecrosis was improved in ZA-treatment groups (p < 0.01) as measured by epiphyseal quotient (EQ). The proportion of "flat" heads (EQ ± 0.40) was significantly reduced from 32% in saline-treated animals to 12% in weekly ZA and 3% in monthly ZA (p < 0.01). Histologically there was a similar prevalence of osteonecrosis in all groups. The prevalence of ossification delay was significantly reduced by ZA treatment (p < 0.01). Zoledronic acid favorably altered femoral head shape in this spontaneous model of osteonecrosis in growing rats. Translation of these results to Perthes disease could mean that deformity of the femoral head may be modified in children, perhaps reducing the need for surgical intervention in childhood and adult life. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Prophylactic Bisphosphonate Treatment Prevents Bone Fractures After Liver Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2007
M. Bodingbauer
A randomized controlled prospective open-label single center trial was performed. At the time of transplantation patients were randomly assigned to one of two treatment arms: The study group of 47 patients received zoledronic acid (ZOL, 8 infusions at 4 mg during the first 12 months after LT), calcium (1000 mg/d) and vitamin D (800 IE/d). The control group consisted of 49 patients who received calcium and vitamin D at same doses (CON). The incidence of bone fractures or death was predefined as the primary endpoint. Secondary endpoints included bone mineral density (BMD), serum biochemical markers of bone metabolism, parameters of trabecular bone histomorphometry and mineralization density distribution (BMDD). Patients were followed up for 24 months. Analysis was performed on an intention-to-treat basis. The primary endpoint fracture or death was reached in 26% of patients in the ZOL group and 46% in the CON group (p = 0.047, log rank test). Densitometry results were different between the groups at the femoral neck at 6 months after LT (mean+/-SD BMD ZOL: 0.80 ± 0.19 g/cm2 vs. CON: 0.73 ± 0.14 g/cm2, p = 0.036). Mixed linear models of biochemical bone markers showed less increase of osteocalcin in the ZOL group and histomorphometry and BMDD indicated a reduction in bone turnover. Prophylactic treatment with the bisphosphonate zoledronic acid reduces bone turnover and fractures after liver transplantation. [source]