| |||
bisphenol-A Epoxy Resin (bisphenol-a + epoxy_resin)
Selected AbstractsProperty enhancement of epoxy resins by using a combination of polyamide and montmorilloniteADVANCES IN POLYMER TECHNOLOGY, Issue 4 2007M. Bakar Abstract A bisphenol-A epoxy resin cured with triethylenetetramine was modified with the addition of a polyamide oligomer and a small amount of montmorillonite. Compositions with different amounts of modifiers were obtained and tested for their impact strength, flexural strength, and resistance to crack propagation. The latter was assessed by measuring the critical stress intensity factor in a three-point bending mode. Scanning electron microscopy was used to examine the sample fracture surfaces. It was found that the addition of 2% montmorillonite or 5% polyamide resulted in the best improvement of the impact strength and the critical stress intensity factor relative to the unmodified epoxy resin. However, the flexural strength and toughness measured under three-point bending mode was found to increase to a lesser extent. Hybrid compositions containing specific combinations of both modifier and nanofiller not only exhibited a higher impact strength and resistance to crack propagation but also displayed a synergistic effect in relation to the fracture energy. The results indicate that the improvement in mechanical properties of the epoxy resin was due to the formation of a heterogeneous morphology resulting from phase separation of the polymeric modifier. From the scanning electron microscopy and thermal analysis, it appears that the toughening may arise from chemical reactions that have taken place between the epoxy resin and the polymeric modifier, which was partially solubilized in the resin matrix. © 2008 Wiley Periodicals, Inc. Adv Polym Techn 26:223,231, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20103 [source] Kinetics and thermodynamics of isothermal curing reaction of epoxy-4, 4,-diaminoazobenzene reinforced with nanosilica and nanoclay particlesPOLYMER COMPOSITES, Issue 8 2010M. Barghamadi The kinetics of the cure reaction for a system of bisphenol-A epoxy resin (DGEBA), with 4, 4,-diaminoazobenzene (DAAB), reinforced with nanosilica (NS), and nanoclay (NC) by means of isothermal technique of differential scanning calorimetry were studied. The Kamal autocatalytic-like kinetic model was used to estimate the reaction orders (m, n), rate constants (k1, k2), and also active energies (Ea) and pre-exponential factors (A) of the curing reaction. However, the existence of NS and NC with hydroxyl groups in the structure improves the cure reaction and influence the rate of reaction and therefore kinetics parameters. The Ea of cure reaction of DGEBA/DAAB system showed a decrease when nanoparticles were present and therefore the rate of the reaction was increased. Using the rate constants from the kinetic analysis and transition state theory, thermodynamic parameters such as enthalpy (,H#), entropy (,S#), and Gibbs free energy (,G#) changes were also calculated. The thermodynamic functions were shown to be very sensitive parameters for evaluation of the cure reaction. POLYM. COMPOS., 31:1442,1448, 2010. © 2009 Society of Plastics Engineers [source] Curing of diglycidyl ether of bisphenol-A epoxy resin using a poly(aryl ether ketone) bearing pendant carboxyl groups as macromolecular curing agentPOLYMER INTERNATIONAL, Issue 8 2009Fuhua Liu Abstract BACKGROUND: Reactive thermoplastics have received increasing attention in the field of epoxy resin toughening. This paper presents the first report of using a novel polyaryletherketone bearing one pendant carboxyl group per repeat unit to cure the diglycidyl ether of bisphenol-A epoxy resin (DGEBA). The curing reactions of DGEBA/PEK-L mixtures of various molar ratios and with different catalysts were investigated by means of dynamic differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy methods. RESULTS: FTIR results for the DGEBA/PEK-L system before curing and after curing at 135 °C for different times demonstrated that the carboxyl groups of PEK-L were indeed involved in the curing reaction to form a crosslinked network, as evidenced by the marked decreased peak intensities of the carboxyl group at 1705 cm,1 and the epoxy group at 915 cm,1 as well as the newly emerged strong absorptions of ester bonds at 1721 cm,1 and hydroxyl groups at 3447 cm,1. Curing kinetic analysis showed that the value of the activation energy (Ea) was the highest at the beginning of curing, followed by a decrease with increasing conversion (,), which was attributed to the autocatalytic effect of hydroxyls generated in the curing reaction. CONCLUSION: The pendant carboxyl groups in PEK-L can react with epoxy groups of DGEBA during thermal curing, and covalently participate in the crosslinking network. PEK-L is thus expected to significantly improve the fracture toughness of DGEBA epoxy resin. Copyright © 2009 Society of Chemical Industry [source] Thermally reversible materials based on thermosetting systems modified with polymer dispersed liquid crystals for optoelectronic application,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11-12 2006A. Tercjak Abstract The main aim of this research was the generation of new intelligent materials, in this case thermoreversible material, based on an epoxy matrix modified with liquid crystal for optoelectronic application. The samples were prepared by the reaction-induced phase separation (RIPS) of a solution of 4,-(hexyloxy)-4-biphenyl-carbonitrile (HOBC) and polystyrene (PS) in diglicydylether of bisphenol-A epoxy resin (DGEBA). The systems were cured with a stoichiometric amount of an aromatic amine hardener, 4,4,-methylene bis(3-chloro-2,6-diethylaniline) (MCDEA). Taken into account results obtained by differential scanning calorimetry (DSC) and transmission optical microscopy (TOM) equipped with a hot stage it was found that depending on morphology generated by RIPS of HOBC/thermoplastic particles in the epoxy matrix thermally reversible light scattering (TRLS) material can be obtained. Copyright © 2006 John Wiley & Sons, Ltd. [source] |