| |||
Biphasic Waveform (biphasic + waveform)
Selected AbstractsA Pilot Study of a Low-Tilt Biphasic Waveform for Transvenous Cardioversion of Atrial Fibrillation: Improved Efficacy Compared with Conventional Capacitor-Based Waveforms in PatientsPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 8 2008BENEDICT M. GLOVER M.D. Background:The optimal waveform tilt for defibrillation is not known. Most modern defibrillators used for the cardioversion of atrial fibrillation (AF) employ high-tilt, capacitor-based biphasic waveforms. Methods:We have developed a low-tilt biphasic waveform for defibrillation. This low-tilt waveform was compared with a conventional waveform of equivalent duration and voltage in patients with AF. Patients with persistent AF or AF induced during a routine electrophysiology study (EPS) were randomized to receive either the low-tilt waveform or a conventional waveform. Defibrillation electrodes were positioned in the right atrial appendage and distal coronary sinus. Phase 1 peak voltage was increased in a stepwise progression from 50 V to 300V. Shock success was defined as return of sinus rhythm for ,30 seconds. Results:The low-tilt waveform produced successful termination of persistent AF at a mean voltage of 223 V (8.2 J) versus 270 V (6.7 J) with the conventional waveform (P = 0.002 for voltage, P = ns for energy). In patients with induced AF the mean voltage for the low-tilt waveform was 91V (1.6 J) and for the conventional waveform was 158 V (2.0 J) (P = 0.005 for voltage, P = ns for energy). The waveform was much more successful at very low voltages (less than or equal to 100 V) compared with the conventional waveform (Novel: 82% vs Conventional 22%, P = 0.008). Conclusion:The low-tilt biphasic waveform was more successful for the internal cardioversion of both persistent and induced AF in patients (in terms of leading edge voltage). [source] Defibrillation Efficacy and Pain Perception of Two Biphasic Waveforms for Internal Cardioversion of Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2003Jens Jung M.D. Introduction: We evaluated the influence of the peak voltage of waveforms used for internal cardioversion of atrial fibrillation on defibrillation efficacy and pain perception. A low peak voltage biphasic waveform generated by a 500-,F capacitor with 40% tilt was compared to a standard biphasic waveform generated by a 60-,F capacitor with 80% tilt. Methods and Results: In 19 patients with paroxysmal atrial fibrillation (79% male, age 55 ± 11 years, 21% with heart disease), the atrial defibrillation threshold (ADFT) was determined during deep sedation with midazolam for both waveforms in a randomized fashion using a step-up protocol. Internal cardioversion with a single lead (shock vector: coronary sinus to right atrium) was successful in 18 (95%) of 19 patients. ADFT energy and peak voltage were significantly lower for the low-voltage waveform (2.1 ± 2.4 J vs 3.5 ± 3.9 J, P < 0.01; 100 ± 53 V vs 290 ± 149 V, P < 0.01). Sedation then was reversed with flumazenil after ADFT testing. Two shocks at the ADFT (or a 3-J shock if ADFT >3 J) were administered to the patient using each waveform in random order. Pain perception was assessed using both a visual scale and a numerical score. ADFTs were above the pain threshold in 17 (94%) of 18 patients, even though the ADFT with the 500-,F waveform was <100 V in 63% of the patients. Pain perception was comparable for both waveforms (numerical score: 6.5 ± 2.4 vs 6.3 ± 2.6; visual scale: 5.4 ± 2.6 vs 5.2 ± 3.1; P = NS, 500-,F vs 60-,F). The second shock was perceived as more painful in 88% of the patients, independent of the waveform used. Conclusion: Despite a 66% lower peak voltage and a 40% lower energy, the 40% tilt, 500-,F capacitor biphasic waveform did not change the pain perceived by the patient during delivery of internal cardioversion shocks. Pain perception for internal cardioversion probably is not influenced by peak voltage alone and increases with the number of applied shocks. (J Cardiovasc Electrophysiol, Vol. 14, pp. 837-840, August 2003) [source] New Approach to Biphasic Waveforms for Internal Defibrillation:JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2000Fully Discharging Capacitors Internal Defibrillation with Fully Discharging Capacitors. Introduction: The use of two independent, fully discharging capacitors for each phase of a biphasic defibrillation waveform may lead to the design of a simpler, smaller, internal defibrillator. The goal of this study was to determine the optimal combination of capacitor sizes for such a waveform. Methods and Results: Eight full-discharge (95/95% tilt), biphasic waveforms produced by several combinations of phase-1 capacitors (30, 60, and 90 ,F) and phase-2 capacitors (1/3, 2/3, and 1.0 times the phase-1 capacitor) were tested and compared to a single-capacitor waveform (120 ,F, 65/65% tilt) in a pig ventricular fibrillation model (n = 12, 23 ± 2 kg). In the full-discharge waveforms, phase-2 peak voltage was equal to phase-1 peak voltage. Shocks were delivered between a right ventricular lead and a left pectoral can electrode. E50s and V50s were determined using a ten-step Bayesian process. Full-discharge waveforms with phase-2 capacitors of ,40 ,F had the same E50 (6.7 ± 1.7 J to 7.3 ± 3.9 J) as the single-capacitor truncated waveform (7.3 ± 3.7 J), whereas waveforms with phase-2 capacitors of ,60 ,F had an extremely high E50 (14.5 ± 10.8 J or greater, P < 0.05). Moreover, of the former set of energy-efficient waveforms, those with phase-1 capacitors of ,60 ,F additionally exhibited V50s that were equivalent to the V50 of the single-capacitor waveform (344 ± 65 V to 407 ± 50 V vs 339 ± 83 V). Conclusion: Defibrillation efficacy can be maintained in a full-discharge, two-capacitor waveform with the proper choice of capacitors. [source] A Model of Ischemically Induced Ventricular Fibrillation for Comparison of Fixed-dose and Escalating-dose Defibrillation StrategiesACADEMIC EMERGENCY MEDICINE, Issue 6 2004James T. Niemann MD Abstract Objectives: Fixed- and escalating-dose defibrillation protocols are both in clinical use. Clinical observations suggest that the probability of successful defibrillation is not constant across a population of patients with ventricular fibrillation (VF). Common animal models of electrically induced VF do not represent a clinical VF etiology or reproduce clinical heterogeneity in defibrillation probability. The authors hypothesized that a model of ischemically induced VF would exhibit heterogeneous defibrillation shock strength requirements and that an escalating-dose strategy would more effectively achieve prompt defibrillation. Methods:Forty-six swine were randomized to fixed, lower-energy (150 J) transthoracic shocks (group 1) or escalating, higher-energy (200 J,300 J,360 J) shocks (group 2). VF was induced by balloon occlusion of a coronary artery. After 1 or 5 minutes of VF, countershocks with a biphasic waveform were administered. The primary endpoint was successful defibrillation (termination of VF for 5 seconds) with ,3 shocks. Results: VF was induced with occlusion or after reperfusion in 35 animals. Only five of 17 group 1 animals (29%, 95% CI = 10 to 56) could be defibrillated with ,3 shocks; 15 of 18 group 2 animals (83%, 95% CI = 59 to 96) were defibrillated with ,3 shocks (p < 0.002 vs. group 1). Nine of the group 1 animals (75%) that could not be defibrillated with 150-J shocks were rescued with ,3 shocks ranging from 200 to 360 J. Conclusions: In this ischemic VF animal model, defibrillation shock strength requirements varied among individuals, and when defibrillation was difficult, an escalating-dose strategy was more effective for prompt defibrillation than fixed, lower-energy shocks. [source] Prognostic implications of a biphasic waveform for APTT analysis in a district general hospitalINTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 6 2008G. MAIR Summary Activated partial thromboplastin time analysis creates waveforms of light transmittance against time. An abnormal biphasic waveform has been linked to morbidity and mortality. This study aims to quantify this link for patients in a district general hospital and determine the prognostic implications of the biphasic waveform. Data were collected over a 5-month period and analysed retrospectively to ascertain rates of infection, disseminated intravascular coagulation (DIC) and death. This was followed by a one month prospective study to assess prognostic implications. Rates of infection, DIC and death were high in this study population. The biphasic waveform often pre-empts these outcomes and is shown to be useful in predicting a poor prognosis. [source] Waveform analysis of clotting test optical profiles in the diagnosis and management of disseminated intravascular coagulation (DIC)INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 6 2002C. H. Toh Summary Transmittance waveform charts the changes in light transmittance on standard coagulation assays, such as the prothrombin time (PT) and activated partial thromboplastin time (APTT). Analysis and characterization of these data on photo-optical coagulation analysers provides additional qualitative and quantitative information to that obtained using the clotting time alone. The most thoroughly evaluated clinical application is that of the biphasic APTT waveform with disseminated intravascular coagulation (DIC). The degree of waveform abnormality correlates directly with the severity of haemostatic dysfunction and allows for both the prediction and monitoring from non-overt to overt DIC. As its performance is simple and rapid, this provides the means for targeting therapeutic intervention to an earlier stage of DIC. The recent identification that the mechanism underlying the biphasic waveform is a complex that exists in vivo between C reactive protein with very low density lipoprotein, provides potentially important insights into the molecular pathogenesis of DIC. Thus, in addition to the immediate clinical utility in diagnostic practice, it has important applications as a research tool. Preliminary experience in the application of this technology to the diagnosis and management of the haemophilias and the lupus anticoagulant syndrome has also provided evidence of the power and utility of waveform analysis in essentially simple clotting assays. [source] Defibrillation Efficacy and Pain Perception of Two Biphasic Waveforms for Internal Cardioversion of Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2003Jens Jung M.D. Introduction: We evaluated the influence of the peak voltage of waveforms used for internal cardioversion of atrial fibrillation on defibrillation efficacy and pain perception. A low peak voltage biphasic waveform generated by a 500-,F capacitor with 40% tilt was compared to a standard biphasic waveform generated by a 60-,F capacitor with 80% tilt. Methods and Results: In 19 patients with paroxysmal atrial fibrillation (79% male, age 55 ± 11 years, 21% with heart disease), the atrial defibrillation threshold (ADFT) was determined during deep sedation with midazolam for both waveforms in a randomized fashion using a step-up protocol. Internal cardioversion with a single lead (shock vector: coronary sinus to right atrium) was successful in 18 (95%) of 19 patients. ADFT energy and peak voltage were significantly lower for the low-voltage waveform (2.1 ± 2.4 J vs 3.5 ± 3.9 J, P < 0.01; 100 ± 53 V vs 290 ± 149 V, P < 0.01). Sedation then was reversed with flumazenil after ADFT testing. Two shocks at the ADFT (or a 3-J shock if ADFT >3 J) were administered to the patient using each waveform in random order. Pain perception was assessed using both a visual scale and a numerical score. ADFTs were above the pain threshold in 17 (94%) of 18 patients, even though the ADFT with the 500-,F waveform was <100 V in 63% of the patients. Pain perception was comparable for both waveforms (numerical score: 6.5 ± 2.4 vs 6.3 ± 2.6; visual scale: 5.4 ± 2.6 vs 5.2 ± 3.1; P = NS, 500-,F vs 60-,F). The second shock was perceived as more painful in 88% of the patients, independent of the waveform used. Conclusion: Despite a 66% lower peak voltage and a 40% lower energy, the 40% tilt, 500-,F capacitor biphasic waveform did not change the pain perceived by the patient during delivery of internal cardioversion shocks. Pain perception for internal cardioversion probably is not influenced by peak voltage alone and increases with the number of applied shocks. (J Cardiovasc Electrophysiol, Vol. 14, pp. 837-840, August 2003) [source] A Pilot Study of a Low-Tilt Biphasic Waveform for Transvenous Cardioversion of Atrial Fibrillation: Improved Efficacy Compared with Conventional Capacitor-Based Waveforms in PatientsPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 8 2008BENEDICT M. GLOVER M.D. Background:The optimal waveform tilt for defibrillation is not known. Most modern defibrillators used for the cardioversion of atrial fibrillation (AF) employ high-tilt, capacitor-based biphasic waveforms. Methods:We have developed a low-tilt biphasic waveform for defibrillation. This low-tilt waveform was compared with a conventional waveform of equivalent duration and voltage in patients with AF. Patients with persistent AF or AF induced during a routine electrophysiology study (EPS) were randomized to receive either the low-tilt waveform or a conventional waveform. Defibrillation electrodes were positioned in the right atrial appendage and distal coronary sinus. Phase 1 peak voltage was increased in a stepwise progression from 50 V to 300V. Shock success was defined as return of sinus rhythm for ,30 seconds. Results:The low-tilt waveform produced successful termination of persistent AF at a mean voltage of 223 V (8.2 J) versus 270 V (6.7 J) with the conventional waveform (P = 0.002 for voltage, P = ns for energy). In patients with induced AF the mean voltage for the low-tilt waveform was 91V (1.6 J) and for the conventional waveform was 158 V (2.0 J) (P = 0.005 for voltage, P = ns for energy). The waveform was much more successful at very low voltages (less than or equal to 100 V) compared with the conventional waveform (Novel: 82% vs Conventional 22%, P = 0.008). Conclusion:The low-tilt biphasic waveform was more successful for the internal cardioversion of both persistent and induced AF in patients (in terms of leading edge voltage). [source] "Tuned" Defibrillation Waveforms Outperform 50/50% Tilt Defibrillation Waveforms: A Randomized Multi-Center StudyPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2007SENTHIL NATARAJAN M.D. Introduction: A superior performance of a tuned waveform based on duration using an assumed cardiac membrane time constant of 3.5 ms and of a 50/50% tilt waveform over a standard 65/65% tilt waveform has been documented before. However, there has been no direct comparison of the tuned versus the 50/50% tilt waveforms. Methods: In 34 patients, defibrillation thresholds (DFTs) for tuned versus 50/50% tilt waveforms in a random order were measured by using the optimized binary search method. High voltage lead impedance was measured and used to select the pulse widths for tuned and 50/50% tilt defibrillation waveforms. Results: Delivered energy (7.3 ± 4.6 J vs 8.7 ± 5.3 J, P = 0.01), stored energy (8.2 ± 5.1 J vs 9.7 ± 5.6 J, P = 0.01), and delivered voltage (405.9 ± 121.7 V vs 445.0 ± 122.6 V, P = 0.008) were significantly lower for the tuned than for the 50/50% tilt waveform. In four patients with DFT ,15 J, the tuned waveform lowered the mean energy DFT by 2.8 J and mean voltage DFT by 45 V. For all patients, the mean peak delivered energy DFT was reduced from 29 J to 22 J (24% decrease). Multiple regression analysis showed that a left ventricular ejection fraction <20% is a significant predictor of this advantage. Conclusion: Energy and voltage DFTs are lowered with an implantable cardioverter defibrillator that uses a tuned waveform compared to a standard 50% tilt biphasic waveform. [source] Use of a Single Coil Transvenous Electrode with an Abdominally Placed Implantable Cardioverter Defibrillator in ChildrenPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2000PETER S. FISCHBACH While transvenous defibrillator electrode placement avoiding a thoracotomy is preferable, electrode size, a large intercoil spacing, and the need for subclavicular device placement preclude this approach in most children. We investigated a single RV coil to an abdominally placed active can ICD device. Five children ages 8,16 years (weight 21,50 kg, mean 35 kg) underwent ICD placement. Placement of a single coil Medtronic model 6932 or 6943 electrode was performed via the left subclavian vein approach and the electrode positioned in the RV apex with the coil lying along the RV diaphragmatic surface. The ICD (Medtronic Micro Jewel II model 7223Cx) was implanted in a left abdominal pocket with the lead tunneled from the infraclavicular region to the pocket. Implant DFTs were ± 15 J using a biphasic waveform. DFTs rechecked within 3-month postimplant were unchanged. Lead impedance at implant ranged from 38 to 56 ,, mean 51 ,. Follow-up was 3,21 months (total 82 months) with no electrode dislodgment. lead fractures, or inappropriate discharges. Two of the five patients have had successful appropriate ICD discharges. Transvenous ICD electrode placement can be performed in children as small as 20 kg with the device implanted in a cosmetically acceptable abdominal pocket that is well tolerated. Excellent DFTs can be achieved. This approach avoids a thoracotomy in all but the smallest child, does not require subclavicular placement of the device, and avoids use of a second intravascular coil. [source] New Approach to Biphasic Waveforms for Internal Defibrillation:JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2000Fully Discharging Capacitors Internal Defibrillation with Fully Discharging Capacitors. Introduction: The use of two independent, fully discharging capacitors for each phase of a biphasic defibrillation waveform may lead to the design of a simpler, smaller, internal defibrillator. The goal of this study was to determine the optimal combination of capacitor sizes for such a waveform. Methods and Results: Eight full-discharge (95/95% tilt), biphasic waveforms produced by several combinations of phase-1 capacitors (30, 60, and 90 ,F) and phase-2 capacitors (1/3, 2/3, and 1.0 times the phase-1 capacitor) were tested and compared to a single-capacitor waveform (120 ,F, 65/65% tilt) in a pig ventricular fibrillation model (n = 12, 23 ± 2 kg). In the full-discharge waveforms, phase-2 peak voltage was equal to phase-1 peak voltage. Shocks were delivered between a right ventricular lead and a left pectoral can electrode. E50s and V50s were determined using a ten-step Bayesian process. Full-discharge waveforms with phase-2 capacitors of ,40 ,F had the same E50 (6.7 ± 1.7 J to 7.3 ± 3.9 J) as the single-capacitor truncated waveform (7.3 ± 3.7 J), whereas waveforms with phase-2 capacitors of ,60 ,F had an extremely high E50 (14.5 ± 10.8 J or greater, P < 0.05). Moreover, of the former set of energy-efficient waveforms, those with phase-1 capacitors of ,60 ,F additionally exhibited V50s that were equivalent to the V50 of the single-capacitor waveform (344 ± 65 V to 407 ± 50 V vs 339 ± 83 V). Conclusion: Defibrillation efficacy can be maintained in a full-discharge, two-capacitor waveform with the proper choice of capacitors. [source] A Pilot Study of a Low-Tilt Biphasic Waveform for Transvenous Cardioversion of Atrial Fibrillation: Improved Efficacy Compared with Conventional Capacitor-Based Waveforms in PatientsPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 8 2008BENEDICT M. GLOVER M.D. Background:The optimal waveform tilt for defibrillation is not known. Most modern defibrillators used for the cardioversion of atrial fibrillation (AF) employ high-tilt, capacitor-based biphasic waveforms. Methods:We have developed a low-tilt biphasic waveform for defibrillation. This low-tilt waveform was compared with a conventional waveform of equivalent duration and voltage in patients with AF. Patients with persistent AF or AF induced during a routine electrophysiology study (EPS) were randomized to receive either the low-tilt waveform or a conventional waveform. Defibrillation electrodes were positioned in the right atrial appendage and distal coronary sinus. Phase 1 peak voltage was increased in a stepwise progression from 50 V to 300V. Shock success was defined as return of sinus rhythm for ,30 seconds. Results:The low-tilt waveform produced successful termination of persistent AF at a mean voltage of 223 V (8.2 J) versus 270 V (6.7 J) with the conventional waveform (P = 0.002 for voltage, P = ns for energy). In patients with induced AF the mean voltage for the low-tilt waveform was 91V (1.6 J) and for the conventional waveform was 158 V (2.0 J) (P = 0.005 for voltage, P = ns for energy). The waveform was much more successful at very low voltages (less than or equal to 100 V) compared with the conventional waveform (Novel: 82% vs Conventional 22%, P = 0.008). Conclusion:The low-tilt biphasic waveform was more successful for the internal cardioversion of both persistent and induced AF in patients (in terms of leading edge voltage). [source] |