| |||
Binding
Kinds of Binding Terms modified by Binding Selected AbstractsTHE ARGUMENT FROM BINDING*PHILOSOPHICAL PERSPECTIVES, Issue 1 2008Paul Elbourne First page of article [source] ARE PATIENTS' DECISIONS TO REFUSE TREATMENT BINDING ON HEALTH CARE PROFESSIONALS?BIOETHICS, Issue 3 2005Peter Murphy ABSTRACT When patients refuse to receive medical treatment, the consequences of honouring their decisions can be tragic. This is no less true of patients who autonomously decide to refuse treatment. I distinguish three possible implications of these autonomous decisions. According to the Permissibility Claim, such a decision implies that it is permissible for the patient who has made the autonomous decision to forego medical treatment. According to the Anti-Paternalism Claim, it follows that health-care professionals are not morally permitted to treat that patient. According to the Binding Claim it follows that these decisions are binding on health-care professionals. My focus is the last claim. After arguing that it is importantly different from each of the first two claims, I give two arguments to show that it is false. One argument against the Binding Claim draws a comparison with cases in which patients autonomously choose perilous positive treatments. The other argument appeals to considered judgments about cases in which disincentives are used to deter patients from refusing sound treatments. [source] THE EPITHELIAL BRUSH BORDER Na+/H+ EXCHANGER NHE3 ASSOCIATES WITH THE ACTIN CYTOSKELETON BY BINDING TO EZRIN DIRECTLY AND VIA PDZ DOMAIN-CONTAINING Na+/H+ EXCHANGER REGULATORY FACTOR (NHERF) PROTEINSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2008Boyoung Cha SUMMARY 1The Na+/H+ exchanger NHE3 associates with the actin cytoskeleton by binding ezrin both directly and indirectly. Both types of interaction are necessary for acute regulation of NHE3. Most acute regulation of NHE3 occurs by changes in trafficking via effects on exocytosis and/or endocytosis. However, NHE3 activity can also be regulated without changing the surface expression of NHE3 (change in turnover number). 2A positive amino acid cluster in the a-helical juxtamembrane region in the COOH-terminus of NHE3 (amino acids K516, R520 and R527) is necessary for binding to the protein 4.1, ezrin, radixin, moesin (FERM) domain III of ezrin. Direct binding of NHE3 to ezrin is necessary for many aspects of basal trafficking, including basal exocytosis, delivery from the synthetic pathway and movement of NHE3 in the brush border (BB), which probably contributes to endocytosis over a prolonged period of time. 3In addition, NHE3 binds indirectly to ezrin. The PDZ domain-containing proteins Na+/H+ exchanger regulatory factor (NHERF) 1 and NHERF2, as intermediates in linking NHE3 to ezrin, are necessary for many aspects of NHE3 regulation. The binding of NHERF,ezrin/radixin/moesin to NHE3 occurs in the cytosolic domain of NHE3 between amino acids 475 and 689. This NHERF binding is involved in the formation of the NHE3 complex and restricts NHE3 mobility in the BB. However, it is dynamic; for example, changing in some cases of signalling. Furthermore, NHERF binding is necessary for lysophosphatidic acid stimulation of NHE3 and inhibition of NHE3 by Ca2+, cAMP and cGMP. [source] Human immunodeficiency virus gag and pol-specific CD8 T cells in perinatal HIV infectionCYTOMETRY, Issue 5 2001Thomas W. McCloskey Abstract Background: Binding of fluorochrome-conjugated MHC class I tetramers is a powerful means to detect antigen-specific CD8 T lymphocytes. In human immunodeficiency virus (HIV) infection, cellular immune response is essential in curtailing HIV disease progression but gaps persist in our understanding of HIV-specific cells during the disease course. In this study, we evaluated tetramer binding HIV-specific CD8 T cells in HIV-infected children. Methods: Fluorescently labeled tetramers for HIV gag and pol were utilized to quantify antigen-specific cells by flow cytometry using a whole blood labeling method in a cohort of 19 HLA-A2+ HIV- infected children (age range 1 month to 17 years). Results: Fourteen children had detectable gag (median 0.4%) and pol (median 0.1%) binding CD8 T cells, three children had gag binding cells only, and two had neither. Numbers of gag and pol binding cells correlated with each other and each correlated independently with total CD8 T cells and total CD4 T cells. Conclusions: HIV gag and pol-specific CD8 T cells are maintained during the chronic phase of HIV infection in children and CD4 lymphocytes appear to be important for sustaining their levels. Cytometry (Comm. Clin. Cytometry) 46:265,270, 2001. © 2001 Wiley-Liss, Inc. [source] An agonistic mAb directed to the TrkC receptor juxtamembrane region defines a trophic hot spot and interactions with p75 coreceptorsDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2010Veronique Guillemard Abstract The D5 domain of TrkC receptors is a docking site for Neurotrophin-3 (NT-3), but other domains may be relevant for function or harmonizing signals with p75NTR coreceptors. We report a monoclonal antibody (mAb) 2B7 targeting the juxtamembrane domain of TrkC. mAb 2B7 binds to murine and human TrkC receptors and is a functional agonist that affords activation of TrkC, AKT, and MAPK. These signals result in cell survival but not in cellular differentiation. Monomeric 2B7 Fabs also affords cell survival. Binding of 2B7 mAb and 2B7 Fabs to TrkC are blocked by NT-3 in a dose-dependent manner but not by pro-NT-3. Expression of p75NTR coreceptors on the cell surface block the binding and function of mAb 2B7, whereas NT-3 binding and function are enhanced. mAb 2B7 defines a previously unknown neurotrophin receptor functional hot spot; that exclusively generates survival signals; that can be activated by non-dimeric ligands; and potentially unmasks a site for p75-TrkC interactions. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010. [source] Complementary expression and heterophilic interactions between igLON family members neurotrimin and LAMPDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2002Orlando D. Gil Abstract Neurotrimin (Ntm) and the limbic system-associated membrane protein (LAMP) are members of the IgLON (LAMP, OBCAM, Ntm) family of glycorylphosphatidylinositol anchored neural cell adhesion molecules. We previously reported that LAMP and Ntm promote adhesion and neurite outgrowth via a homophilic mechanism, suggesting that these proteins promote the formation of specific neuronal circuits by homophilic interactions. In this report, we have further characterized the expression and binding specificity of Ntm. Using a newly generated monoclonal antibody to Ntm, we demonstrated that this protein is largely expressed in a complementary pattern to that of LAMP in the nervous system, with co-expression at a few sites. Ntm is expressed at high levels in sensory-motor cortex and, of particular note, is transiently expressed in neurons of cortical barrel fields and corresponding thalamic "barreloids." Binding of a recombinant, soluble form of Ntm to CHO cells expressing either Ntm or LAMP demonstrates that Ntm and LAMP interact both homophilically and heterophilically. In contrast to conventional growth-promoting activity of Ig superfamily members, LAMP strongly inhibits the outgrowth of Ntm-expressing dorsal root ganglion (DRG) neurons in a heterophilic manner. These anatomical and functional data support the concept that homophilic and heterophilic interactions between IgLON family members are likely to play a role in the specification of neuronal projections via growth promoting and inhibiting effects, respectively. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 190,204, 2002 [source] A tethered ascorbate-norepinephrine compound, 4-UT, displays long-acting adrenergic activity on rabbit aortic smooth muscleDRUG DEVELOPMENT RESEARCH, Issue 5 2008Robert Root-Bernstein Abstract We previously demonstrated that adrenergic and histaminergic receptors have an ascorbic acid (vitamin C) binding site on the first extracellular loop, immediately adjacent to the aminergic binding site. Binding of ascorbate to this site strongly potentiates any sub-maximal dose of an adrenergic or histaminergic compound, significantly increasing its duration of activity. We report here the successful synthesis of a tethered compound that mimics the combined effects of a mixture of ascorbate with norepinephrine. The tethered compound uses a four-unit polyethylene linker to tether ascorbate to norepinephrine. The tethered compound is about tenfold less effective than norepinephrine in stimulating rabbit aortic smooth muscle, but has a very significantly enhanced duration of activity compared with norepinephrine alone and comparable to a mixture of norepinephrine and ascorbate. Additional ascorbate does not enhance the tethered compound's effects and we demonstrate that the compound binds to a synthetic peptide spanning the ascorbate binding site of the receptor. These experiments strongly suggest that the compound binds to both the adrenergic binding site and the ascorbate binding site simultaneously. Tethered compounds with linkers of other lengths did not have these properties. We believe that the synthesis of enhanced adrenergic and histaminergic drugs by tethering them to potentiators such as ascorbate will permit a new class of potential drugs to be created with high specificity and long duration of activity. Drug Dev Res 69:242,250, 2008. © 2008 Wiley-Liss, Inc. [source] Novel Potentiometric Sensors of Molecular Imprinted Polymers for Specific Binding of ChlormequatELECTROANALYSIS, Issue 2 2008Ayman Abstract Molecularly imprinted polymers (MIP) were used as potentiometric sensors for the selective recognition and determination of chlormequat (CMQ). They were produced after radical polymerization of 4-vinyl pyridine (4-VP) or methacrylic acid (MAA) monomers in the presence of a cross-linker. CMQ was used as template. Similar non-imprinted (NI) polymers (NIP) were produced by removing the template from reaction media. The effect of kind and amount of MIP or NIP sensors on the potentiometric behavior was investigated. Main analytical features were evaluated in steady and flow modes of operation. The sensor MIP/4-VP exhibited the best performance, presenting fast near-Nernstian response for CMQ over the concentration range 6.2×10,6,1.0×10,2,mol L,1 with detection limits of 4.1×10,6,mol L,1. The sensor was independent from the pH of test solutions in the range 5,10. Potentiometric selectivity coefficients of the proposed sensors were evaluated over several inorganic and organic cations. Results pointed out a good selectivity to CMQ. The sensor was applied to the potentiometric determination of CMQ in commercial phytopharmaceuticals and spiked water samples. Recoveries ranged 96 to 108.5%. [source] Electrochemical Investigation of Binding of Heavy Metal Ions to Turkish LignitesELECTROANALYSIS, Issue 16 2004Erol Pehlivan Abstract Adsorption and desorption of Cu2+, Pb2+, Cd2+, Ni2+ and Zn2+ ions on samples of lignites (young brown coal) from three areas in the vicinity of Konya (Anatolia, Turkey) were followed using the polarographic method of analysis. This method enables the determination of free metal ions in suspensions containing both small and colloidal particles of lignite. Effects of pH, nature of the metal ion, and origin of the lignite on its adsorption capacity were followed. Binding is only between 5 and 30% reversible, indicating that ion exchange is not the predominant factor. The role of the size and shape of cavities inside pulverized lignite and of the functional groups inside these cavities was considered. [source] Interaction study of a lysozyme-binding aptamer with mono- and divalent cations by ACEELECTROPHORESIS, Issue 3 2010Marie Girardot Abstract Binding between an aptamer and its target is highly dependent on the conformation of the aptamer molecule, this latter seeming to be affected by a variety of cations. As only a few studies have reported on the interactions of monovalent or divalent cations with aptamers, we describe herein the use of ACE in its mobility shift format for investigating interactions between various monovalent (Na+, K+, Cs+) or divalent (Mg2+, Ca2+, Ba2+) cations and a 30-mer lysozyme-binding aptamer. This study was performed in BGEs of different natures (phosphate and MOPS buffers) and ionic strengths. First, the effective charges of the aptamer in 30,mM ionic strength phosphate and MOPS (pH 7.0) were estimated to be 7.4 and 3.6, respectively. Then, corrections for ionic strength and counterion condensation effects were performed for all studies. The effective mobility shift was attributed not only to these effects, but also to a possible interaction with the buffer components (binary or ternary complexes) as well as possible conformational changes of the aptamer. Finally, apparent binding constants were calculated for divalent cations with mathematical linearization methods, and the influence of the nature of the BGE was evidenced. [source] Capillary electrophoretic study of the binding of zinc(II) ion to bacitracin A1 in water-2,2,2-trifluoroethanolELECTROPHORESIS, Issue 10 2003Massimo Castagnola Abstract Binding of Zn2+ to bacitracin A1 was studied by capillary electrophoresis in water/2,2,2-trifluoroethanol (70/30 v/v) at different apparent pH values in order to estimate the association constant of metal, the acidic dissociation constants and the Stokes radii of both free and bounded peptide in apolar environment. The Stokes radii of the free peptide species were compared with those in aqueous solution, as obtained in a recent study performed by our group, indicating that apolar environment stabilizes bacitracin A1 in a conformational structure with the lateral chain of apolar amino acids exposed on the external surface. This conformation of the macrocyclic dodecapeptide is ready to interact with Zn2+ ion, as pointed out by the strong increase of the association constant measured in water/2,2,2-trifluoroethanol with respect to the value obtained in aqueous solution. In addition, whereas Zn2+ ion binding in aqueous solution provides a sensible reduction of peptide Stokes radius, no sensible variations following to ion binding were observed in hydro-organic solution. The present results suggest that the apolar environment, rather than the metal ion binding, could be responsible for the conformational transition that brings bacitracin A1 towards its biologically active structure.* [source] Horizontal transfer of an exopolymer complex from one bacterial species to anotherENVIRONMENTAL MICROBIOLOGY, Issue 4 2000D. Osterreicher-Ravid Alasan, the exocellular polymeric emulsifier produced by Acinetobacter radioresistens KA53 was shown to bind to the surface of Sphingomonas paucimobilis EPA505 and Acinetobacter calcoaceticus RAG-1. The presence of alasan on the surface of S. paucimobilis EPA505 and A. calcoaceticus RAG-1 caused a decrease in their cell-surface hydrophobicities. Binding was proportional to the concentration of recipient cells and input alasan. At the highest concentration of A. calcoaceticus RAG-1 (4 × 109 ml,1) and alasan (20 µg ml,1) tested, 75% of the alasan was cell bound. Alasan binding was measured by the loss of emulsifying activity and alasan protein and polysaccharide from the aqueous phase after incubation of alasan with the recipient cells. In addition, alasan was visualized on the surface of the recipient cells by staining with anti-alasan antibodies and rhodamine-labelled secondary antibodies. Moreover, when the alasan-producing A. radioresistens KA53 was grown together with A. calcoaceticus RAG-1, alasan was released from the producing strain and became bound to the recipient RAG-1 cells, as demonstrated by fluorescence microscopy. This horizontal transfer of exopolymers from one bacterial species to another has significant implications in natural microbial communities, coaggregation and biofilms. [source] Binding of ciprofloxacin by humic substances: A molecular dynamics studyENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2010Ludmilla Aristilde Abstract A comprehensive assessment of the potential impacts of antimicrobials released into the environment requires an understanding of their sequestration by natural particles. Of particular interest are the strong interactions of antimicrobials with natural organic matter (NOM), which are believed to reduce their bioavailability, retard their abiotic and biotic degradation, and facilitate their persistence in soils and aquatic sediments. Molecular dynamics (MD) relaxation studies of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), interacting with a model humic substance (HS) in a hydrated environment, were performed to elucidate the mechanisms of these interactions. Specifically, a zwitterionic Cipro molecule, the predominant species at circumneutral pH, was reacted either with protonated HS or deprotonated HS bearing Ca, Mg, or Fe(II) cations. The HS underwent conformational changes through rearrangements of its hydrophobic and hydrophilic regions and disruption of its intramolecular H-bonds to facilitate favorable intermolecular H-bonding interactions with Cipro. Complexation of the metal cations with HS carboxylates appeared to impede binding of the positively charged amino group of Cipro with these negatively charged HS complexation sites. On the other hand, an outer-sphere complex between Cipro and the HS-bound cation led to ternary Cipro,metal,HS complexes in the case of Mg,HS and Fe(II),HS, but no such bridging interaction occurred with Ca,HS. The results suggested that the ionic potential (valence/ionic radius) of the divalent cation may be a determining factor in the formation of the ternary complex, with high ionic potential favoring the bridging interaction. Environ. Toxicol. Chem. 2010;29:90,98. © 2009 SETAC [source] Arsenic Binding to Iron(II) Minerals Produced by An Iron(III)-Reducing Aeromonas Strain Isolated from Paddy SoilENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009Xin-Jun Wang Abstract An iron-reducing bacterial strain was isolated from a paddy soil and identified as a member of the Aeromonas group by 16S rRNA gene sequence analysis. When the cells were growing with dissolved Fe(III) as the electron acceptor in the presence of As(V), Fe(II) minerals (siderite and vivianite) were formed and dissolved. As was removed efficiently from solution. When the cells were growing with the Fe(III) hydroxide mineral (ferrihydrite) as the electron acceptor in the presence of As(V), ferrihydrite was reduced and dissolved As(V) concentrations decreased sharply. The present study results demonstrated first that members of the Aeromonas group can reduce Fe(III) in paddy soils and second that iron reduction does not necessarily lead to arsenic mobilization. However, As immobilization can occur in environments that contain significant concentrations of counterions such as bicarbonate and phosphate. [source] Effects of water hardness and dissolved organic material on bioavailability of selected organic chemicalsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2001Jarkko Akkanen Abstract The influence of water hardness and dissolved organic matter (DOM) on bioavailability of organic chemicals to Daphnia magna was studied by using benzo[a]pyrene (BaP), pyrene, atrazine, and 3,3,,4,4,-tetrachlorobiphenyl (TCB) as model compounds. Two types of DOM were used, namely Lake Kontiolampi, Joeusuu, Finland water (KL) and Nordic reference fulvic acid (NoFA) dissolved in artificial freshwater. Binding of the four contaminants by KL, DOM decreased with increasing water hardness. Furthermore, increasing hardness reduced the binding of BaP and pyrene to NoFA. The binding of atrazine and TCB by NoFA was low and was not significantly affected by water hardness. In the DOM-free samples, the bioconcentration of the four contaminants in D. magna usually was not affected by water hardness. In the presence of DOM, the bioconcentration factors (BCFs) were lower (except for atrazine) than in the DOM-free controls. In the presence of both types of DOM, increasing water hardness resulted in higher BCFs for BaP. The bioconcentration of pyrene and TCB increased with increasing water hardness in the presence of KL DOM. In conclusion, the effects of DOM and water hardness on bioavailability of hydrophobic chemicals depend on the type of chemical and on the properties of DOM. [source] Decreased Dopamine D2/D3-Receptor Binding in Temporal Lobe Epilepsy: An [18F]Fallypride PET StudyEPILEPSIA, Issue 8 2006Konrad J. Werhahn Summary:,Purpose: Although animal data are suggestive, evidence for an alteration of the extrastriatal dopaminergic system in human focal epilepsy is missing. Methods: To quantify D2/D3-receptor density, we studied seven patients with temporal lobe epilepsy (TLE) and nine age-matched controls with positron emission tomography (PET) by using the high-affinity dopamine D2/D3-receptor ligand [18F]Fallypride ([18F]FP) suitable for imaging extrastriatal binding. TLE was defined by interictal and ictal video-EEG, magnetic resonance imaging (MRI), and [18F]fluorodeoxyglucose ([18F]FDG)-PET and was due to hippocampal sclerosis (HS), based on histology in all patients. Primary analysis was based on regions of interest (ROIs) defined on individual MRIs. For each patient, binding potential (BP) was calculated by using the simplified reference tissue model, and the epileptogenic was compared with the unaffected hemisphere in each ROI. To confirm the results, an additional voxel-based group analysis was performed by using statistical parametric mapping. Results: Compared with controls, [18F]FP BP was significantly decreased in the epileptogenic temporal lobe in all patients. On ROI analysis, this reduction was evident in areas surrounding the seizure-onset zone at the pole (,34.2%) and lateral aspects (,32.9%) of the temporal lobe. Although the hippocampus [18F]FDG uptake (,8.1%) and hippocampal MR volume (,35.1%) were significantly reduced, no significant decrease of [18F]FP BP was found. Reduction of [18F]FP BP did not correlate with hippocampal atrophy. Conclusions: D2/D3-receptor binding is reduced at the pole and in lateral aspects of the epileptogenic temporal lobe in patients with mesial TLE and HS. This area might correspond to "the irritative zone," indicating that D2/D3 receptors might play a specific role in the pathophysiology of mesial TLE. [source] Assessment of CD8 involvement in T,cell clone avidity by direct measurement of HLA-A2/Mage3 complex density using a high-affinity TCR like monoclonal antibodyEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2005Karine Bernardeau Abstract Peptide affinity for MHC molecules determines the number of MHC/peptide complexes stabilized at the cell surface in in vitro tests or in vaccination protocols. We isolated a high affinity monoclonal antibody specific for the HLA-A2/Mage3 complex that enables an equilibrium binding assay to be performed on T2 cell line loaded with a range of Mage3 peptides. Binding of Mage3 to the HLA-A2 molecule can be modeled by a standard receptor-ligand interaction characterized by an affinity constant. This model enables the measurement of the affinity of other immunogenic peptides for HLA-A2 by a competition test and the calculation of the density of complexes stabilized at the T2 cell surface for all peptide concentrations. Quantification of the HLA-A2/Mage3 complexes at target cell surfaces was used to estimate the number of complexes required to reach cytotoxicity ED50 of human T,cell clones sorted from an unprimed repertoire. We confirm with this antibody the direct relationship between clone avidity and TCR affinity, and the moderate contribution of the CD8 co-receptor in the reinforcement of TCR-MHC/peptide contact. Nevertheless, CD8 plays a critical role in the amplification of the specific signal to establish an efficient T,cell response at low specific complex densities found in physiological situations. [source] Role of the complement-lectin pathway in anaphylactoid reaction induced with lipopolysaccharide in miceEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2003wierzko Abstract We show that Proteus vulgaris,O25 (PO25) lipopolysaccharide (LPS) induced an anaphylactoid reaction not only in wild-type and in lipid,A non-responding mice but also in recombinase-activating gene-2-deficient (RAG-2,/,) and in mast cell-deficient (W/Wv) animals. Western blot analysis indicated that PO25 LPS bound to Ra-reactive factor (RaRF), the complex of mannan-binding lectins (MBL) and MBL-associated serine proteases. Binding of RaRF to PO25 LPS led to the activation of C4 component without participation of either C1 or Ig, via the lectin pathway. Relative concentration of RaRF and hemolytic activity in mouse serum decreased rapidly during the process of anaphylactoid reaction. A significant drop of MBL-A, but not MBL-C level was observed. Administrationwith antiserum to RaRF prevented animals from death as a consequence of the inhibition of interaction of RaRF with the carbohydrate target and complement activation. These results indicate that complement-lectin pathway activation is responsible for the anaphylactoid reaction induced with LPS in muramyldipeptide-primed mice. RaRF also activated fibrinogen in vitro suggesting the involvement of the coagulation system in the process investigated. [source] T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by LckEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2003Elisabetta Soldaini Abstract Binding of the hepatitis C virus (HCV) envelope protein E2 to CD81 provides a costimulatory signal for human T cells. This phenomenon may play a role in liver damage and autoimmune manifestations associated with HCV infection. Here we show that cross-linking of CD81 by HCV E2 induced a calcium flux in T cells that depends on Lck since it was blocked by PP1 and absent in Lck-deficient Jurkat T cells. In wild-type Jurkat cells, Lck was activated by CD81 cross-linking, and CD81, like Lck, was found in lipid rafts. Indeed, the integrity of the raft compartment was required for the induction of a calcium flux by E2, since methyl-,-cyclodextrin abolished this response. A requirement for TCR/CD3 expression was indicated by the absence of a calcium flux following E2 stimulation of TCR/CD3-deficient Jurkat cells. CD81 cross-linking increased and prolonged the anti-CD3-induced tyrosine phosphorylation of TCR, and of other proteins, indicating that the CD81-mediated signal converges with the TCR/CD3 signaling cascade at its most upstream step. In conclusion, we propose that the costimulatory effects of HCV E2 on T cells depend on CD81 cross-linking that activates Lck through raft aggregation and thus leads to enhanced TCR signaling. [source] Biochemical and functional characterization of the interaction between pentraxin 3 and C1qEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2003Abstract Pentraxin 3 (PTX3) is a recently characterized member of the pentraxin family of acute-phase proteins produced during inflammation. Classical short pentraxins, C-reactive protein, and serum amyloid P component can bind to C1q and thereby activate the classical complement pathway. Since PTX3 can also bind C1q, the present study was designed to define the interaction between PTX3 and C1q and to examine the functional consequences of this interaction. A dose-dependent binding of both C1q and the C1 complex to PTX3 was observed. Experiments with recombinant globular head domains of human C1q A, B, and C chains indicated that C1q interacts with PTX3 via its globular head region. Binding of C1q to immobilized PTX3 induced activation of the classical complement pathway as assessed by C4 deposition. Furthermore, PTX3 enhanced C1q binding and complement activation on apoptotic cells. However, in the fluid-phase, pre-incubation of PTX3 with C1q resulted in inhibition of complement activation by blocking the interaction of C1q with immunoglobulins. These results indicate that PTX3 can both inhibit and activate the classical complement pathway by binding C1q, depending on the way it is presented. PTX3 may therefore be involved in the regulation of the innate immune response. [source] A Cyclic Fc,Histidine Conjugate: Synthesis and Properties , Interactions with Alkali Metal IonsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 5 2006Somenath Chowdhury Abstract The synthesis of the novel N,N, -(ferrocenophane-1,1,-diyldicarbonyl)-bridged histidine methyl ester 1 and of the acyclicbis(histidine methyl ester) derivative 3 are reported. The structure of 1 was studied in the solid state and in solution. The single-crystal structure of 1 shows that both proximal ferrocenyl (Fc) carbonyl groups are syn with respect to each other, which is a new structural motif for Fc,amino acid conjugates. This new syn conformation allows effective binding to alkali metal cations. Binding is evaluated by cyclic voltammetry monitoring the halfwave potential of the Fc group. Cation binding causes a shift to lower potential (Na+ > Li+ > K+, Cs+). Upon binding, compound 1 shows selectivity towards Na+ ions. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Binding of Oxovanadium(IV) to Tripeptides Containing Histidine and Cysteine Residues and Its Biological Implication in the Transport of Vanadium and Insulin-Mimetic CompoundsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2005Eugenio Garribba Abstract The complexation of VIVO ion with three tripeptides of biological importance containing L -histidine or L -cysteine (HisGlyGly, GlyGlyHis and GlyGlyCys) has been studied. This study was performed in aqueous solution by the combined application of potentiometric and spectroscopic (electronic absorption and EPR) techniques. The results indicate that these oligopeptides, if a ligand-to-metal molar ratio of 10 or 15 is used, can keep VIVO ion in solution until the deprotonation of the amide group with the donor set (NH2, CO, Nimax) for HisGlyGly or (COO,, CO) for GlyGlyHis and GlyGlyCys. In all the systems, at pH values around neutrality, a VOLH,2 species is formed with an (NH2, N,, N,, COO,) donor set for HisGlyGly, (NH2, N,, N,, Nim) for GlyGlyHis and (NH2, N,,N,, S,) for GlyGlyCys. These species, and those with onedeprotonated amide group coordinated to the VIVO ion, can be detected by EPR spectroscopy. The N,(amide) contribution to the hyperfine coupling constant along the z axis, Az, depends on the total charge of the donor atoms in the equatorial plane. The participation of albumin in the transport of vanadium and insulin-mimetic VIVO compounds is reconsidered based on these results. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Thermodynamic Study of the Binding of Methyltrioxorhenium with Pyridine and Its Derivatives in Benzene SolutionEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 12 2005S. Masoud Nabavizadeh Abstract A spectrophotometric study of the interaction of methyltrioxorhenium (MTO) with pyridine and its derivatives in benzene solution has been carried out at various temperatures. The stability constants of the resulting 1:1 complexes were determined by analysis of spectrophotometric data and found to vary in the order 3,4-Me2Py > 4- tBuPy > 4-MePy > 3-MePy > 4-BenzylPy > Py > 3-PhPy > 3-C(O)OMePy > 3-ClPy. The enthalpy and entropy of adduct formation were determined from the temperature dependence of the stability constants. All complexes formed were enthalpy stabilized but entropy destabilized. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Dimeric 2,2,-Bipyridylruthenium(II) Complexes Containing 2,2,-Bis(1,2,4-triazin-3-yl)-4,4,-bipyridine-Like Bridging Ligands: Syntheses, Characterization and DNA BindingEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2004Cai-Wu Jiang Abstract Three new bridging ligands 2,2,-bis(1,2,4-triazin-3-yl)-4,4,-bipyridine (btb), 2,2,-bis(1,2,4-triazino[5,6-f]acenaphthylen-3-yl)-4,4,-bipyridine (btapb), 2,2,-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-4,4,-bipyridine (bdptb) and their dimeric 2,2,-bipyridylruthenium(II) complexes [Ru(bpy)2(btb)Ru(bpy)2]4+ (1), [Ru(bpy)2(btapb)Ru(bpy)2]4+ (2), [Ru(bpy)2(bdptb)Ru(bpy)2]4+ (3) have been synthesized and characterized by elemental analysis, fast atom bombardment (FAB) mass spectrometry or electrospray mass spectrometry (ES-MS), 1H NMR and UV/Visible spectroscopy. The binding behavior of these dimeric complexes with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopy, viscosity measurements, and equilibrium dialysis experiments. The hypochromism of the metal-ligand charge transfer (MLCT) band in the electronic absorption spectra of the dinuclear complexes 1, 2, and 3 is 8.7%, 19% and 33%, respectively, with bathochromic shifts of 5, 5 and 14 nm, respectively. The binding constants are 7.5×104M,1, 4.8×105M,1 and 7.6×105M,1, respectively. Increasing the size of the plane of the bridging ligand increases the hydrophobicity of their complexes, leading to stronger binding by the complexes to calf thymus DNA. The effect of increasing concentrations of these novel dimeric ruthenium(II) complexes on the relative viscosities of CT-DNA is less notable than that of well-known intercalators such as [Ru(bpy)2(dppz)]2+. The equilibrium experiments showed that ,,,3 binding is stronger than ,,,3 binding to CT-DNA. This is the first example of a dinuclear complex binding enantioselectively to CT-DNA measured by equilibrium dialysis. The experiments suggest that the three complexes may be DNA groove binders. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis -Diol and Carboxylate FunctionsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 17 2010Martín Regueiro-Figueroa Abstract A series of receptors containing phenylboronic acid and urea or thiourea units have been designed for simultaneous recognition of the cis -diol and carboxylate functions of sialic acids, which are known to be overexpressed on the surfaces of tumor cells. The interaction of the receptors with 5-acetylneuraminic acid (Neu5Ac) and 2-,- O -methyl Neu5Ac (MeNeu5Ac) in DMSO solution has been investigated bymeans of spectrophotometric titrations and 1H, 13C, and 11B NMR spectroscopy. Additionally, we have also investigated the binding of these receptors with competing monosaccharides such as D -(+)-glucose, D -fructose, methyl ,- D -galactoside, and methyl ,- D -mannoside. Our results show that 2-{[3-(4-nitrophenyl)thioureido]methyl}phenylboronic acid (3a) recognizes both Neu5Ac and MeNeu5Ac with good selectivity with regard to the remaining monosaccharides investigated. DFT calculations performed at the B3LYP/6-31G(d) level show that this selectivity is due to a cooperative two-site binding of Neu5Ac through 1) ester formation by interaction at the phenylboronic acid function of the receptor and 2) hydrogen-bond interaction between the thiourea moiety and the carboxylate group of Neu5Ac. Compound 3a can therefore be considered a promising synthon for the design of contrast agents for magnetic resonance imaging of tumors. In contrast, the analogue of 3a containing a urea moiety , compound 3b , displays strong binding to all monosaccharides investigated, due to two-site binding through interaction on the phenylboronic acid function of the receptor and a hydrogen-bond interaction between the urea moiety and the sugar hydroxy groups. [source] In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of C- D -Glycopyranosylbenzo(hydro)quinones , Inhibition of and Binding to Glycogen Phosphorylase in the Crystal,EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 4 2007Li He Abstract Penta- O -acetyl-,- D -glycopyranoses and 1,4-dimethoxybenzene led selectively by electrophilic substitution to C-,- D -glycopyranosyl-1,4-dimethoxybenzenes which were converted by simple and efficient reactions (oxidation, reduction and deacetylation) to the corresponding C-glycosylhydro- and C-glycosylbenzoquinones, with either an acetylated or deprotected sugar moiety. C-,- D -Glucosylbenzoquinone 19 and C-,- D -Glucosylhydroquinone 23 were found to be competitive inhibitors of rabbit muscle glycogen phosphorylase b (GPb), with respect to the substrate ,- D -glucose-1-phosphate, with Ki values of 1.3 and 0.9 mM, respectively, whereas C-,- D -glucosylhydroquinone 17 was not effective up to a concentration of 8 mM. In order to elucidate the structural basis of inhibition, we determined the crystal structures of 19 and 23 in complex with GPb at a 2.03,2.05 Ĺ resolution. The complex structures reveal that the inhibitors can be accommodated at the catalytic site at approximately the same position as ,- D -glucose and stabilise the transition state conformation of the 280s loop by making several favourable contacts to Asp283 and Asn284 of this loop. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] C-Disaccharides as Probes for Carbohydrate Recognition , Investigation of the Conformational Requirements for Binding of Disaccharide Mimetics of Sialyl Lewis XEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 4 2007Richard W. Denton Abstract A set of C-disaccharide analogs was designed to probe the recognition of a known O-disaccharide mimetic of sialyl Lewis X, to P-selectin. The synthesis of the C-glycosides centered on the de novo construction of the galactose residue via an oxocarbenium ion/enol ether cyclization. Conformational analysis was performed by a combination of NMR spectroscopy and molecular mechanics (MM) and molecular dynamics (MD) calculations. The inhibition of P-selectin binding was evaluated in a P-selectin Biacore assay. At 12 mM, the O-glycoside showed 48,% inhibition of binding, while the C-glycoside analogs exhibited between 25,31,% inhibition. This data is discussed within the context of the active conformation of sLex and the conformational behavior of these ligands. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Stable Ion and Electrophilic Substitution (Nitration and Bromination) Study of A-Ring Substituted Phenanthrenes: Novel Carbocations and Substituted Derivatives; NMR, X-ray Analysis, and Comparative DNA BindingEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 3 2007Cédric Brulé Abstract Persistent carbocations were generated from five A-ring mono- and di-substituted phenanthrenes [3-OMe; 4-OMe, 1,3-bis(OMe), 2,4-bis(OMe), and 1,3-bis(Me)]. In all cases protonation occurs in the A-ring, ortho/para relative to methoxy or methyl substituent(s). Complete NMR assignments of the resulting carbocations are reported and their charge delocalization modes are discussed. Mild nitration (with 20,50,% aqueous HNO3 at ,10 °C or at room temp.) and bromination (NBS/MeCN/room temp.) of these substrates resulted in the synthesis of several novel mononitro-/dinitro- as well as monobromo/dibromo derivatives, including those with nitro or bromo substituent in the bay-region. Correspondence between the site of attack in low-temperature protonation study and nitro substitution in ambient mild nitrations are examined. Complete NMR assignments for the new derivatives are reported as well as X-ray structures for 2,4-dimethoxy-1-nitro- and 1,3-dimethyl-4-nitrophenanthrenes. A comparative DNA binding study with MCF cells on three of the synthesized mononitro and one dinitro derivative showed that 1,3-dimethyl-9-nitro- (nitro at the meso position), 3-methoxy-4-nitro- (nitro in bay-region), and 1,3-dimethoxy-4,9-dinitrophenanthrenes (nitro in both meso and bay-regions) formed DNA adducts. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Screening of Garlic Water Extract for Binding Activity with Cholera Toxin B Pentamer by NMR Spectroscopy , An Old Remedy Giving a New SurpriseEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 9 2006Matteo Politi Abstract Binding between a component of the crude hot water extract obtained from Allium sativum crushed bulbs (ASw) and cholera toxin B pentamer (CTB) was detected by STD NMR experiments. Bioassay-oriented fractionation allowed the partial identification of a high molecular weight polysaccharide mainly composed of galactose as the bioactive complex against CTB. This work represents the first example of screening of a medicinal plant by NMR against a specific disease, and corroborates traditional medical uses of the species. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Effect of siRNA terminal mismatches on TRBP and Dicer binding and silencing efficacyFEBS JOURNAL, Issue 22 2009Hemant K. Kini To enhance silencing and avoid off-target effects, siRNAs are often designed with an intentional bias to ensure that the end of the siRNA that contains the guide strand 5, end is less stably hybridized relative to the end containing the passenger strand 5, end. One means by which this is accomplished is to introduce a terminal mismatch, typically by changing the passenger strand sequence to impair its hybridization with the guide strand 5, end. However, there are conflicting reports about the influence of terminal mismatches on the silencing efficacy of siRNAs. Here, the silencing efficiency of siRNAs with a terminal mismatch generated either by altering the guide strand (at the 5, end, nucleotide 1) or the passenger strand (nucleotide 19 from the 5, end) was examined. Subsequently, we studied the relationship between the silencing efficiency of the siRNAs and their binding to the RNA-induced silencing complex loading complex proteins HIV transactivating response RNA-binding protein and Dicer in H1299 cytoplasmic extracts. Binding of siRNA and the transactivating response RNA-binding protein was significantly reduced by terminal mismatches, which largely agrees with the reduction in eventual silencing efficacy of the siRNAs. Single terminal mismatches led to a small increase in Dicer binding, as expected, but this did not lead to an improvement in silencing activity. These results demonstrate that introduction of mismatches to control siRNA asymmetry may not always improve target silencing, and that care should be taken when designing siRNAs using this technique. [source] |