Binary Systems (binary + system)

Distribution by Scientific Domains
Distribution within Physics and Astronomy


Selected Abstracts


Bi2O3,MoO3 Binary System: An Alternative Ultralow Sintering Temperature Microwave Dielectric

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009
Di Zhou
Preparation, phase composition, microwave dielectric properties, and chemical compatibility with silver and aluminum electrodes were investigated on a series of single-phase compounds in the Bi2O3,MoO3 binary system. All materials have ultralow sintering temperatures <820°C. Eight different xBi2O3,(1,x)MoO3 compounds between 0.2,x,0.875 were fabricated and the associated microwave dielectric properties were studied. The ,-Bi2Mo2O9 single phase has a positive temperature coefficient of resonant frequency (TCF) about +31 ppm/°C, with a permittivity ,r=38 and Qf=12 500 GHz at 300 K and at a frequency of 6.3 GHz. The ,-Bi2Mo3O12 and ,-Bi2MoO6 compounds both have negative temperature coefficient values of TCF,,215 and ,,114 ppm/°C, with permittivities of ,r=19 and 31, Qf=21 800 and 16 700 GHz at 300 K measured at resonant frequencies of 7.6 and 6.4 GHz, respectively. Through sintering the Bi2O3,2.2MoO3 at 620°C for 2 h, a composite dielectric containing both , and , phase can be obtained with a near-zero temperature coefficient of frequency TCF=,13 ppm/°C and a relative dielectric constant ,r=35, and a large Qf,12 000 GHz is also observed. Owing to the frequent difficulty of thermochemical interactions between low sintering temperature materials and the electrode materials during the cofiring, preliminary investigations are made to determine any major interactions with possible candidate electrode metals, Ag and Al. From the above results, the low sintering temperature, good microwave dielectric properties, chemical compatibility with Al metal electrode, nontoxicity and price advantage of the Bi2O3,MoO3 binary system, all indicate the potential for a new material system with ultralow temperature cofiring for multilayer devices application. [source]


Nanopowder Preparation and Dielectric Properties of a Bi2O3,Nb2O5 Binary System Prepared by the High-Energy Ball-Milling Method

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2008
Di Zhou
The high-energy ball-milling (HEM) method was used to synthesize the compositions of BiNbO4, Bi5Nb3O15, and Bi3NbO7 in a Bi2O3,Nb2O5 binary system. Reagent Bi2O3 and Nb2O5 were chosen as the starting materials. The X-ray diffraction patterns of the three compositions milled for different times were studied. Only the cubic Bi3NbO7 phase, Nb2O5, and amorphous matters were observed in powders after being milled for 10 h. After heating at proper temperatures the amorphous matters disappeared and the proleptic phases of BiNbO4 and Bi5Nb3O15 could be obtained. The Scherrer formula was used to calculate the crystal size and the results of nanopowders are between 10 and 20 nm. The scanning electron microscopy photos of Bi3NbO7 powders showed drastic aggregation, and the particle size was about 100 nm. The dielectric properties of ceramics sintered from the nanopowders prepared by HEM at 100,1 MHz and the microwave region were measured. Bi3NbO7 ceramics showed a good microwave permittivity ,r of about 80 and a Q×f of about 300 at 5 GHz. The triclinic phase of BiNbO4 ceramics reached its best properties with ,r=24 and Q×f=14 000 GHz at about 8 GHz. [source]


ChemInform Abstract: A Highly Regioselective Palladium-Catalyzed Hydrophosphination of Alkynes Using a Diphosphine,Hydrosilane Binary System.

CHEMINFORM, Issue 9 2009
Shin-ichi Kawaguchi
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Thermodynamic Assessment of TbBr3 Unary and NaBr,TbBr3 Binary System.

CHEMINFORM, Issue 51 2005
Weiping Gong
No abstract is available for this article. [source]


Phase Diagram of the Tb,Ni Binary System.

CHEMINFORM, Issue 34 2005
Qingrong Yao
No abstract is available for this article. [source]


Size Effect on Properties of Varistors Made From Zinc Oxide Nanoparticles Through Low Temperature Spark Plasma Sintering

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
Léna Saint Macary
Abstract Conditions for the elaboration of nanostructured varistors by spark plasma sintering (SPS) are investigated, using 8-nm zinc oxide nanoparticles synthesized following an organometallic approach. A binary system constituted of zinc oxide and bismuth oxide nanoparticles is used for this purpose. It is synthesized at room temperature in an organic solution through the hydrolysis of dicyclohexylzinc and bismuth acetate precursors. Sintering of this material is performed by SPS at various temperatures and dwell times. The determination of the microstructure and the chemical composition of the as-prepared ceramics are based on scanning electron microscopy and X-ray diffraction analysis. The nonlinear electrical characteristics are evidenced by current,voltage measurements. The breakdown voltage of these nanostructured varistors strongly depends on grain sizes. The results show that nanostructured varistors are obtained by SPS at sintering temperatures ranging from 550 to 600,°C. [source]


Properties of a poly(acrylamide- co -diallyl dimethyl ammonium chloride) hydrogel synthesized in a water,ionic liquid binary system

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Qian Zhao
Abstract A novel copolymer hydrogel, poly(acrylamide- co -diallyl dimethyl ammonium chloride), was prepared by the radical copolymerization of acrylamide and diallyl dimethyl ammonium chloride in an ionic liquid (IL),water binary system in the presence of the crosslinker N,N,-methylene bisacrylamide. The equilibrium swelling ratios of the hydrogels synthesized in the IL,water binary system increased with the content of IL and were remarkably higher than that of the gel synthesized in water. Differential scanning calorimetry measurements showed that the glass-transition temperatures of the dry hydrogels that were synthesized in the IL,water binary system were remarkably lower than that of the gel synthesized in pure water. The mechanical properties of the gels synthesized in both water and the IL,water binary system were characterized with a universal material-testing machine. The results show that fracture toughness of the hydrogels was improved when they were synthesized in the IL,water binary system. The gel shrank under a direct-current electric field. The response rates of the gels that were synthesized with the IL,water binary system were faster than that of the gel synthesized in water. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Onium salt reduces the inhibitory polymerization effect from an organic solvent in a model dental adhesive resin

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008
Fabrício A. Ogliari
Abstract This study evaluated the effect of organic solvent concentration on the polymerization kinetics for a model dental adhesive resin containing a ternary photoinitiator system. A monomer blend based on the bis-GMA, TEGDMA, and HEMA was used as a model dental adhesive resin, which was polymerized using a binary system [camphorquinone (CQ) and ethyl 4-dimethylamine benzoate (EDAB)] and a ternary system [CQ, EDAB, and diphenyliodonium hexafluorphosphate (DPIHFP)]. Additionally, these blends had 0, 10, 20, 30, and 40 wt % ethanol added. Real-time Fourier transform infrared spectroscopy was used to investigate the polymerization reaction over photoactivation time. Data were plotted, and Hill's three-parameter nonlinear regression was performed for curve fitting. The addition of a solvent to the monomer blends decreased the polymerization kinetics, directly affecting the rate of polymerization, delaying vitrification, and attenuating the Trommsdorf effect. The introduction of DPIHFP displayed a strong increase in reaction kinetics, reducing the solvent inhibition effect. After 10 s of photoactivation, the binary system obtained in 0, 10, 20, 30, and 40% of ethanol, a degree of conversion of 44.6, 26.3, 13.4, 1.15, and 0.0%, respectively, whereas when a ternary system was used, the values were 54.6, 40.5, 27.4, 14.5, and 3.4%. An improvement was observed in the polymerization kinetics of a model dental adhesive resin when using a ternary photoinitiation system, making the material less sensitive to the residual presence of a solvent before photoactivation. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Removal of anionic pollutants from groundwaters using Alamine 336: chemical equilibrium modelling

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2006
Eugenio Bringas
Abstract This work reports the study of the chemical equilibrium of the extraction of chromium(VI) anions from groundwaters where other anionic species are present, mainly sulfate and chloride anions, using Alamine 336 as extractant. The analysis was performed working with two different systems: (i) a binary system (sulfate and chloride anions) and, (ii) a tertiary system (chromium, sulfate and chloride anions) with a composition of 9.6,15.4 mol Cr6+ m,3, 5.2,16.7 mol SO42, m,3 and 4.2,13.5 mol Cl, m,3 respectively. A careful experimental design was performed and the data were correlated to the mathematical models obtaining the equilibrium parameters of the extraction reactions in both systems. Copyright © 2006 Society of Chemical Industry [source]


Ethyl-paraben and nicotinamide mixtures: Apparent solubility, thermal behavior and X-ray structure of the 1:1 co-crystal,

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2008
S. Nicoli
Abstract This work aims at investigating the nicotinamide (NA),ethyl-paraben (EP) binary system both in solution and in the solid state. In particular, the apparent EP solubility in water was studied in the presence of different NA concentrations (between 0.28 and 1.64 M). It was found that the apparent EP solubility increase (nearly twofold) observed at the highest NA concentration tested can be ascribed to a change in the polarity of the solvent mixture, rather than to a direct effect of NA on EP. The effect of fusion and re-crystallization from water or ethanol solutions on EP and NA mixtures was investigated by means of differential scanning calorimetry, elemental analysis and X-ray diffraction both on powder and single crystal. It was discovered that EP and NA form a co-crystal having a 1:1 molar composition that can be easily crystallized from ethanol. Single crystal X-ray analysis of this species revealed that the NA and EP molecules form corrugated layers within which the two components are intimately associated by a dense network of hydrogen bonds. In the presence of an excess NA in solution, the EP-NA co-crystal has lower water solubility with respect to both the single co-crystal formers and precipitates in aqueous solutions at ambient temperature. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4830,4839, 2008 [source]


Complexation and chiral drug recognition of an amphiphilic phenothiazine derivative with , -cyclodextrin

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2008
Andrés Guerrero-Martínez
Abstract Promethazine hydrochloride (PTZ) is an amphiphilic drug derived from the phenothiazine structure that possesses a charged aliphatic chain with a chiral carbon. In the presence of , -cyclodextrin (, -CD), this drug undergoes significant changes of its photophysical properties in aqueous solution. Fluorescence spectroscopy measurements show the formation of a 1:1 stoichiometry complex with quantum yield lower than that of the pure PTZ, and two fluorescence lifetimes, which can be assigned to the free and complexed forms of the drug. In addition, 1H NMR spectra, and 2D rotating-frame Overhauser enhancement spectroscopy (ROESY) were used to characterize the drug and the complex, and to determine the effects of the complexation on the aggregation. For the drug binary system, a noncooperative association process is observed, and in the presence of macrocycle, the chemical shifts reveal a chiral resolution of the drug enantiomers, with different stability constants of the complexes. , -CD modifies the aggregation of PTZ in an extension that confirms the formation of a 1:1 complex. ROE enhancements and molecular modeling strategies show the most likely structure of the complex in solution, in which one of the phenyl rings is buried into the CD cavity, with a slight inclusion of the aliphatic part. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1484,1498, 2008 [source]


Polymorphism of racemic felodipine and the unusual series of solid solutions in the binary system of its enantiomers

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2001
Judith M. Rollinger
Abstract The aim of this study was to investigate the binary phase diagram and the polymorphism and pseudopolymorphism of racemic and enantiomeric felodipine, including their spectroscopic and thermodynamic properties. Different crystal forms were obtained by crystallization from solvents or from the annealed melt and investigated by thermal analysis (hot stage microscopy, differential scanning calorimetry, thermogravimetric analysis), spectroscopic methods (Fourier transform infrared,and Fourier transform,Raman spectroscopy), and X-ray powder diffractometry. The binary melting phase diagram was constructed based on thermoanalytical investigations of quantitative mixtures of (+)- and (±)-felodipine. Two polymorphic forms of racemic felodipine, mod. I (mp, ,145°C) and mod. II (mp, ,135°C), as well as an acetone solvate (SAc,) were characterized. Melting equilibria of felodipine crystal forms decrease due to thermal decomposition. Enantiomeric felodipine was found to be dimorphic (En-mod. I: mp, ,144°C; En-mod. II: mp, ,133°C). Evaluation of the binary system of (+)- and (,)-felodipine results in the formation of a continuous series of mixed crystals between the thermodynamically stable and higher melting modifications, mod. I and En-mod. I. Their unusual curve course, termed as Roozeboom Type 2 b, passes through a maximum in the racemic mixture and is flanked by a minimum at 20% and at 80% (+)-felodipine. From the thermodynamic parameters, racemic mod. I and II are monotropically related. In contrast to SAc, the thermodynamically unstable mod. II shows a considerable kinetic stability. Because its crystallization is badly reproducible, the use of mod. II is not advisable for processing. However, desolvation of SAc leads to a profitable crystal shape of mod. I, representing a pseudoracemate by definition. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:949,959, 2001 [source]


Bi2O3,MoO3 Binary System: An Alternative Ultralow Sintering Temperature Microwave Dielectric

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009
Di Zhou
Preparation, phase composition, microwave dielectric properties, and chemical compatibility with silver and aluminum electrodes were investigated on a series of single-phase compounds in the Bi2O3,MoO3 binary system. All materials have ultralow sintering temperatures <820°C. Eight different xBi2O3,(1,x)MoO3 compounds between 0.2,x,0.875 were fabricated and the associated microwave dielectric properties were studied. The ,-Bi2Mo2O9 single phase has a positive temperature coefficient of resonant frequency (TCF) about +31 ppm/°C, with a permittivity ,r=38 and Qf=12 500 GHz at 300 K and at a frequency of 6.3 GHz. The ,-Bi2Mo3O12 and ,-Bi2MoO6 compounds both have negative temperature coefficient values of TCF,,215 and ,,114 ppm/°C, with permittivities of ,r=19 and 31, Qf=21 800 and 16 700 GHz at 300 K measured at resonant frequencies of 7.6 and 6.4 GHz, respectively. Through sintering the Bi2O3,2.2MoO3 at 620°C for 2 h, a composite dielectric containing both , and , phase can be obtained with a near-zero temperature coefficient of frequency TCF=,13 ppm/°C and a relative dielectric constant ,r=35, and a large Qf,12 000 GHz is also observed. Owing to the frequent difficulty of thermochemical interactions between low sintering temperature materials and the electrode materials during the cofiring, preliminary investigations are made to determine any major interactions with possible candidate electrode metals, Ag and Al. From the above results, the low sintering temperature, good microwave dielectric properties, chemical compatibility with Al metal electrode, nontoxicity and price advantage of the Bi2O3,MoO3 binary system, all indicate the potential for a new material system with ultralow temperature cofiring for multilayer devices application. [source]


Binary Phase Diagram of the Manganese Oxide,Iron Oxide System

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009
Jarrod V. Crum
The phase equilibrium of the MnOx,FeOy binary system was measured within a temperature range of 750°,1590°C in air to examine inconsistencies found in literature, i.e., discrepancies related to the boundary between the spinel and hausmannite+spinel phase fields. Several studies are available in the literature that describe this boundary however the results and methods by which they were studied vary namely in terms of the atmosphere (air versus reducing) used and heat treatment/analysis methods. In addition, samples in the discrepancy region of the diagram revert to the hausmannite phase spontaneously upon cooling due to a displacive transformation. In order to accurately measure the phase boundaries, the following measurement methods were used: isothermal heat treatments followed by rapid quenching (in air or water), dilatometry, differential thermal analysis with thermogravimetric analysis, as well as room temperature and hot-stage X-ray diffraction (XRD). Phase assemblage(s) in each specimen were determined by XRD. Data were compared with literature and a new, self consistent phase diagram was developed. The results are reported along with background information and a comparison with previously reported data. This study will support development of a model for thermodynamic equilibria in complex, multioxide silicate melts. [source]


Nanopowder Preparation and Dielectric Properties of a Bi2O3,Nb2O5 Binary System Prepared by the High-Energy Ball-Milling Method

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2008
Di Zhou
The high-energy ball-milling (HEM) method was used to synthesize the compositions of BiNbO4, Bi5Nb3O15, and Bi3NbO7 in a Bi2O3,Nb2O5 binary system. Reagent Bi2O3 and Nb2O5 were chosen as the starting materials. The X-ray diffraction patterns of the three compositions milled for different times were studied. Only the cubic Bi3NbO7 phase, Nb2O5, and amorphous matters were observed in powders after being milled for 10 h. After heating at proper temperatures the amorphous matters disappeared and the proleptic phases of BiNbO4 and Bi5Nb3O15 could be obtained. The Scherrer formula was used to calculate the crystal size and the results of nanopowders are between 10 and 20 nm. The scanning electron microscopy photos of Bi3NbO7 powders showed drastic aggregation, and the particle size was about 100 nm. The dielectric properties of ceramics sintered from the nanopowders prepared by HEM at 100,1 MHz and the microwave region were measured. Bi3NbO7 ceramics showed a good microwave permittivity ,r of about 80 and a Q×f of about 300 at 5 GHz. The triclinic phase of BiNbO4 ceramics reached its best properties with ,r=24 and Q×f=14 000 GHz at about 8 GHz. [source]


Thermodynamic Assessment of the Gallium-Oxygen System

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2004
Matvei Zinkevich
The experimental information relevant to the Ga-O binary system has been critically assessed. A self-consistent set of Gibbs energy functions describing the phases in this system and a phase diagram are presented for the first time. The adjustable parameters of the models are obtained by a least-squares fit to the experimental data. The liquid phase is described by Hillert's partially ionic liquid model. The gallium oxides (,-, ,-, ,-, and ,-Ga2O3) are modeled as stoichiometric phases. The gas phase is treated as an ideal solution of the species Ga, Ga2, Ga2O, GaO, O, O2, and O3. The calculated phase diagram and thermodynamic properties agree very well with most of the experimental measurements. [source]


Mullitization from a Multicomponent Oxide System in the Temperature Range 1200°,1500°C

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000
Hyunho Shin
Mullitization from a multicomponent oxide system (alumina,kaolin,quartz,feldspar,talc) was analyzed as a function of firing temperature from 1200° to 1500°C based on quantitative XRD and SEM. In the present study, whisker forms of mullite grew in three characteristic stages. In the first stage (1255°,1295°C), mullitization (nucleation) took place from glass via alumina dissolution into glass under the condition of no apparent change in glass content. The reaction in this stage was rate-limited by alumina dissolution into glass. Extensive mullitization occurred in the 1295°,1335°C range (second stage) directly from glass. Unlike in the sol,gel-based binary system, alumina dissolution into glass was not shown to be the rate-controlling mechanism during this extensive mullitization stage. Finally (>1335°C, third stage), the reaction was saturated, accompanied by an apparent decrease in glass consumption rate. The impingement of mullite whiskers by other whiskers and crystals was speculated to cause mullite to grow in the transverse direction, yielding a diminished reaction rate in the final stage. Mullitization stages in this work were compared with those of the alumina,silica binary system shown in the literature. [source]


High-dispersion spectroscopy of two A supergiant systems in the Small Magellanic Cloud with novel properties

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
R. E. Mennickent
ABSTRACT We present the results of a spectroscopic investigation of two novel variable bright blue stars in the SMC, OGLE004336.91-732637.7 (SMC-SC3) and the periodically occulted star OGLE004633.76-731204.3 (SMC-SC4), whose photometric properties were reported by Mennickent et al. (2010). High-resolution spectra in the optical and far-UV show that both objects are actually A + B type binaries. Three spectra of SMC-SC4 show radial velocity variations, consistent with the photometric period of 184.26 d found in Mennickent et al. 2010. The optical spectra of the metallic lines in both systems show combined absorption and emission components that imply that they are formed in a flattened envelope. A comparison of the radial velocity variations in SMC-SC4 and the separation of the V and R emission components in the H, emission profile indicate that this envelope, and probably also the envelope around SMC-SC3, is a circumbinary disc with a characteristic orbital radius some three times the radius of the binary system. The optical spectra of SMC-SC3 and SMC-SC4 show, respectively, He i emission lines and discrete blue absorption components (BACs) in metallic lines. The high excitations of the He i lines in the SMC-SC3 spectrum and the complicated variations of Fe ii emission and absorption components with orbital phase in the spectrum of SMC-SC4 suggests that shocks occur between the winds and various static regions of the stars' corotating binary-disc complexes. We suggest that BACs arise from wind shocks from the A star impacting the circumbinary disc and a stream of former wind-efflux from the B star accreting on to the A star. The latter picture is broadly similar to mass transfer occurring in the more evolved (but less massive) algol (B/A + K) systems, except that we envision transfer occurring in the other direction and not through the inner Lagrangian point. Accordingly, we dub these objects prototype of a small group of Magellanic Cloud wind-interacting A + B binaries. [source]


The shape of an accretion disc in a misaligned black hole binary

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2009
Rebecca G. Martin
ABSTRACT We model the overall shape of an accretion disc in a semidetached binary system in which mass is transferred on to a spinning black hole the spin axis of which is misaligned with the orbital rotation axis. We assume the disc is in a steady state. Its outer regions are subject to differential precession caused by tidal torques of the companion star. These tend to align the outer parts of the disc with the orbital plane. Its inner regions are subject to differential precession caused by the Lense,Thirring effect. These tend to align the inner parts of the disc with the spin of the black hole. We give full numerical solutions for the shape of the disc for some particular disc parameters. We then show how an analytic approximation to these solutions can be obtained for the case when the disc surface density varies as a power law with radius. These analytic solutions for the shape of the disc are reasonably accurate even for large misalignments and can be simply applied for general disc parameters. They are particularly useful when the numerical solutions would be slow. [source]


Magnetic fields and chemical peculiarities of the very young intermediate-mass binary system HD 72106

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
C. P. Folsom
ABSTRACT The recently discovered magnetic Herbig Ae and Be stars may provide qualitatively new information about the formation and evolution of magnetic Ap and Bp stars. We have performed a detailed investigation of one particularly interesting binary system with a Herbig Ae secondary and a late B-type primary possessing a strong, globally ordered magnetic field. 20 high-resolution Stokes V spectra of the system were obtained with the ESPaDOnS instrument mounted on the Canada,France,Hawaii Telescope. In these observations we see clear evidence for a magnetic field in the primary, but no evidence for a magnetic field in the secondary. A detailed abundance analysis was performed for both stars, revealing strong chemical peculiarities in the primary and normal chemical abundances in the secondary. The primary is strongly overabundant in Si, Cr and other iron-peak elements, as well as Nd, and underabundant in He. The primary therefore appears to be a very young Bp star. In this context, line profile variations of the primary suggest non-uniform lateral distributions of surface abundances. Interpreting the 0.639 95 ± 0.000 09 d variation period of the Stokes I and V profiles as the rotational period of the star, we have modelled the magnetic field geometry and the surface abundance distributions of Si, Ti, Cr and Fe using magnetic Doppler imaging. We derive a dipolar geometry of the surface magnetic field, with a polar strength Bd= 1230 G and an obliquity ,= 57°. The distributions Ti, Cr and Fe are all qualitatively similar, with an elongated patch of enhanced abundance situated near the positive magnetic pole. The Si distribution is somewhat different, and its relationship to the magnetic field geometry less clear. [source]


Massive stars exploding in a He-rich circumstellar medium , I. Type Ibn (SN 2006jc-like) events

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
A. Pastorello
ABSTRACT We present new spectroscopic and photometric data of the Type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal Type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf,Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf,Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a Type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous Type Ia event with some resemblance to SN 1991bg. [source]


H, long-term monitoring of the Be star , Cephei Aa

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
G. Catanzaro
ABSTRACT Papers published in recent years have contributed to resolve the enigma of the hypothetical Be nature of the hot pulsating star , Cephei. This star shows variable emission in the H, line, typical for Be stars, but its projected rotational velocity is very much lower than the critical limit, contrary to what is expected for a typical Be star. The emission has been attributed to the secondary component of the , Cephei spectroscopic binary system. In this paper, using both our and archived spectra, we attempt to recover the H, profile of the secondary component and to analyse its behaviour with time for a long period. To accomplish this task, we first derive the atmospheric parameters of the primary, Teff= 24 000 ± 250 K and log g= 3.91 ± 0.10, and then we use these values to compute its synthetic H, profile, and finally we reconstruct the secondary's profile disentangling the observed one. The secondary's H, profile shows the typical two-peak emission of a Be star with a strong variability. We also analysed the behaviour versus time of some linewidth parameters: equivalent width, ratio of blue to red peak intensities, full width at half-maximum, peak separation and radial velocity of the central depression. The projected rotational velocity (v sin i) of the secondary and the dimension of the equatorial surrounding disc have also been estimated. [source]


Two-Micron All-Sky Survey J01542930+0053266: a new eclipsing M dwarf binary system

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
A. C. Becker
ABSTRACT We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of 2.639 0157 ± 0.000 0016 d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses (M1= 0.66 ± 0.03 M,; M2= 0.62 ± 0.03 M,) and radii (R1= 0.64 ± 0.08 R,; R2= 0.61 ± 0.09 R,) of the components, which are consistent with empirical mass,radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of H, emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys. [source]


A search for binarity using Far-Ultraviolet Spectroscopic Explorer observations of DAO white dwarfs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
S. A. Good
ABSTRACT We report on a search for evidence of binarity in Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of DAO white dwarfs. Spectra recorded by FUSE are built up from a number of separate exposures. Observation of changes in the position of photospheric heavy element absorption lines between exposures, with respect to the stationary interstellar medium lines, would reveal radial velocity changes , evidence of the presence of a binary system. This technique is successful in picking out all the white dwarfs already known to be binaries, which comprise five out of the sample of 16, but significant radial velocity shifts were found for only one additional star, Ton 320. This object is also known to have an infrared excess. DAOs can be separated broadly into low- or normal-mass objects. Low-mass white dwarfs can be formed as a result of binary evolution, but it has been suggested that the lower mass DAOs evolve as single stars from the extended horizontal branch, and we find no evidence of binarity for eight out of the 12 white dwarfs with relatively low mass. The existence of higher mass DAOs can also be explained if they are within binary systems, but of the four higher mass stars in the sample studied, PG 1210+533 and LB 2 do not exhibit significant radial velocity shifts, although there were only two exposures for the former object, and the latter has an infrared excess. [source]


The highly spotted photosphere of the young rapid rotator Speedy Mic

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2005
J. R. Barnes
ABSTRACT We present high-resolution images of the young rapidly rotating K3 dwarf Speedy Mic (BO Mic, HD 197890). The photospheric spot maps reveal a heavily and uniformly spotted surface from equatorial to high-latitude regions. Contrary to many images of similar objects, Speedy Mic does not possess a uniform filling at high latitudes, but exhibits structure in the polar regions showing greatest concentration in a particular longitude range. The asymmetric rotation profile of Speedy Mic indicates the presence of a companion or nearby star which shows radial velocity shifts over a time-scale of several years. Using a simple dynamical argument, we show that Speedy Mic is unlikely to be a binary system, and conclude that the feature must be the result of a chance alignment with a background binary. Complete phase coverage on two consecutive nights in addition to 60 per cent phase coverage after a three-night gap has enabled us to track the evolution of spots with time. By incorporating a solar-like differential rotation model into the image reconstruction process, we find that the equator laps the polar regions once every 191 ± 17 d. This finding is in close agreement with measurements for other late-type rapid rotators. [source]


A binary system of tailed radio galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2004
I. Klamer
ABSTRACT We present a detailed study of a binary system of tailed radio galaxies which, along with 3C 75, is the only such binary known to exist. The binary is located in a region of low galaxy density at the periphery of a poor cluster Abell S345, but lies close to the massive Horologium,Reticulum supercluster. The radio sources have bent-tail morphologies and show considerable meandering and wiggling along the jets, which are collimated throughout their lengths. This work presents observations of the large-scale-structure environment of the binary tailed radio sources with a view to examining the influence of large-scale flows on the morphology and dynamics of the associated radio tails. We argue that the orbital motions of the host galaxies together with tidal accelerations toward the supercluster have resulted in the complex structure seen in these radio tails. [source]


The lithium depletion boundary and the age of NGC 2547

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2003
J. M. Oliveira
ABSTRACT We present the results of a photometric and spectroscopic survey of cool M dwarf candidates in the young open cluster NGC 2547. Using the 2dF fibre spectrograph, we have searched for the luminosity at which lithium remains unburned in an attempt to constrain the cluster age. The lack of a population of individual lithium-rich objects towards the faint end of our sample places a very strong lower limit to the cluster age of 35 Myr. However, the detection of lithium in the averaged spectra of our faintest targets suggests that the lithium depletion boundary lies at 9.5 < MI < 10.0 and that the cluster age is <54 Myr. The age of NGC 2547 judged from fitting isochrones to low-mass pre-main-sequence stars in colour,magnitude diagrams is 20,35 Myr using the same evolutionary models. The sense and size of the discrepancy in age determined by these two techniques is similar to that found in another young cluster, IC 2391, and in the low-mass pre-main-sequence binary system, GJ 871.1AB. We suggest that the inclusion of rotation or dynamo-generated magnetic fields in the evolutionary models could reconcile the two age determinations, but only at the expense of increasing the cluster ages beyond that currently indicated by the lithium depletion. Alternatively, some mechanism is required that increases the rate of lithium depletion in young, very low-mass fully convective stars. [source]


The influence of binary stars on the kinematics of low-mass galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2002
S. De Rijcke
In this paper, the influence of binary stars on the measured kinematics of dwarf galaxies is investigated. Using realistic distributions of the orbital parameters (semi-major axis, eccentricity, etc.), analytical expressions are derived for the changes induced by the presence of binary stars in the measured velocity moments of low-mass galaxies (such as the projected velocity dispersion and the fourth-order Gauss,Hermite coefficient h4). It is shown that there is a noticeable change in the observed velocity dispersion if the intrinsic velocity dispersion of a galaxy is of the same order as the binary velocity dispersion. The kurtosis of the line-of-sight velocity distribution (LOSVD) is affected even at higher values of the intrinsic velocity dispersion. Moreover, the LOSVD of the binary stars (i.e. the probability of finding a star in a binary system with a particular projected velocity) is given in closed form, approximating the constituent stars of all binaries to revolve on circular orbits around each other. With this binary LOSVD, we calculate the observed LOSVD, the latter quantifying the movement of stars along the line of sight caused both by the orbits of the stars through the galaxy and by the motion of the stars in binary systems. As suggested by the changes induced in the moments, the observed LOSVD becomes more peaked around zero velocity and develops broader high-velocity wings. These results are important in interpreting kinematics derived from integrated-light spectra of low-mass galaxies and many of the intermediate results are useful for comparison with Monte Carlo simulations. [source]


Winds from massive stars: implications for the afterglows of , -ray bursts

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2001
Enrico Ramirez-Ruiz
Recent observations suggest that long-duration , -ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in core-collapse explosions. The pre-explosive ambient medium provides a natural test for the most likely progenitors of GRBs. Those stars that shed their envelopes most readily have short jet crossing times and are more likely to produce a GRB. We construct a simple computational scheme to explore the expected contribution of the presupernova ejecta of single Wolf,Rayet (WR) stars to the circumstellar environment. Using detailed stellar tracks for the evolution of massive stars, we discuss the effects that the initial main-sequence mass, metallicity, rotation and membership in a binary system have on the ambient medium. We extend the theory of GRB afterglows in winds to consider the effect of the relativistic fireball propagating through the WR ejecta. Specific predictions are made for the interaction of the relativistic blast wave with the density bumps that arise when the progenitor star rapidly loses a large fraction of its initial mass or when the ejected wind interacts with the external medium and decelerates. A re-brightening of the afterglow with a spectrum redder than the typical synchrotron spectrum (as seen in GRB 970508, GRB 980326 and GRB 000911) is predicted. We also calculate the luminosity of the reflected echo that arises when circumstellar material Compton-scatters the prompt radiation, and examine the spectral signatures expected from the interaction of the GRB afterglow with the ejected medium. [source]


Optical spectroscopy of GX 339,4 during the high,soft and low,hard states , II.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2001
Line ionization, emission region
We have carried out observations of the X-ray transient GX 339,4 during its high,soft and low,hard X-ray spectral states. Our high-resolution spectroscopic observation in 1999 April suggests that the H, line has a single-peaked profile in the low,hard state as speculated in our previous paper. The He ii,4686 line, however, has a double-peaked profile in both the high,soft and low,hard states. This suggests that the line-emission mechanism is different in the two states. Our interpretation is that double-peaked lines are emitted from a temperature-inversion layer on the accretion disc surface when it is irradiatively heated by soft X-rays. Single-peaked lines may be emitted from outflow/wind matter driven by hard X-ray heating. We have constructed a simple plane-parallel model and we use it to illustrate that a temperature-inversion layer can be formed at the disc surface under X-ray illumination. We also discuss the conditions required for the formation of temperature inversion and line emission. Based on the velocity separations measured for the double-peaked lines in the high,soft state, we propose that GX 339,4 is a low-inclination binary system. The orbital inclination is about 15° if the orbital period is 14.8 h. [source]