Binary Covariate (binary + covariate)

Distribution by Scientific Domains


Selected Abstracts


Simple estimates of haplotype relative risks in case-control data

GENETIC EPIDEMIOLOGY, Issue 6 2006
Benjamin French
Abstract Methods of varying complexity have been proposed to efficiently estimate haplotype relative risks in case-control data. Our goal was to compare methods that estimate associations between disease conditions and common haplotypes in large case-control studies such that haplotype imputation is done once as a simple data-processing step. We performed a simulation study based on haplotype frequencies for two renin-angiotensin system genes. The iterative and noniterative methods we compared involved fitting a weighted logistic regression, but differed in how the probability weights were specified. We also quantified the amount of ambiguity in the simulated genes. For one gene, there was essentially no uncertainty in the imputed diplotypes and every method performed well. For the other, ,60% of individuals had an unambiguous diplotype, and ,90% had a highest posterior probability greater than 0.75. For this gene, all methods performed well under no genetic effects, moderate effects, and strong effects tagged by a single nucleotide polymorphism (SNP). Noniterative methods produced biased estimates under strong effects not tagged by an SNP. For the most likely diplotype, median bias of the log-relative risks ranged between ,0.49 and 0.22 over all haplotypes. For all possible diplotypes, median bias ranged between ,0.73 and 0.08. Results were similar under interaction with a binary covariate. Noniterative weighted logistic regression provides valid tests for genetic associations and reliable estimates of modest effects of common haplotypes, and can be implemented in standard software. The potential for phase ambiguity does not necessarily imply uncertainty in imputed diplotypes, especially in large studies of common haplotypes. Genet. Epidemiol. 2006. © 2006 Wiley-Liss, Inc. [source]


Quantifying the Magnitude of Baseline Covariate Imbalances Resulting from Selection Bias in Randomized Clinical Trials

BIOMETRICAL JOURNAL, Issue 2 2005
Vance W. Berger
Abstract Selection bias is most common in observational studies, when patients select their own treatments or treatments are assigned based on patient characteristics, such as disease severity. This first-order selection bias, as we call it, is eliminated by randomization, but there is residual selection bias that may occur even in randomized trials which occurs when, subconsciously or otherwise, an investigator uses advance knowledge of upcoming treatment allocations as the basis for deciding whom to enroll. For example, patients more likely to respond may be preferentially enrolled when the active treatment is due to be allocated, and patients less likely to respond may be enrolled when the control group is due to be allocated. If the upcoming allocations can be observed in their entirety, then we will call the resulting selection bias second-order selection bias. Allocation concealment minimizes the ability to observe upcoming allocations, yet upcoming allocations may still be predicted (imperfectly), or even determined with certainty, if at least some of the previous allocations are known, and if restrictions (such as randomized blocks) were placed on the randomization. This mechanism, based on prediction but not observation of upcoming allocations, is the third-order selection bias that is controlled by perfectly successful masking, but without perfect masking is not controlled even by the combination of advance randomization and allocation concealment. Our purpose is to quantify the magnitude of baseline imbalance that can result from third-order selection bias when the randomized block procedure is used. The smaller the block sizes, the more accurately one can predict future treatment assignments in the same block as known previous assignments, so this magnitude will depend on the block size, as well as on the level of certainty about upcoming allocations required to bias the patient selection. We find that a binary covariate can, on average, be up to 50% unbalanced by third-order selection bias. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Misclassification in Logistic Regression with Discrete Covariates

BIOMETRICAL JOURNAL, Issue 5 2003
Ori Davidov
Abstract We study the effect of misclassification of a binary covariate on the parameters of a logistic regression model. In particular we consider 2 × 2 × 2 tables. We assume that a binary covariate is subject to misclassification that may depend on the observed outcome. This type of misclassification is known as (outcome dependent) differential misclassification. We examine the resulting asymptotic bias on the parameters of the model and derive formulas for the biases and their approximations as a function of the odds and misclassification probabilities. Conditions for unbiased estimation are also discussed. The implications are illustrated numerically using a case control study. For completeness we briefly examine the effect of covariate dependent misclassification of exposures and of outcomes. [source]


Synthesis of Evidence from Epidemiological Studies with Interval-Censored Exposure Due to Grouping

BIOMETRICS, Issue 3 2001
Richard J. Cook
Summary. We describe a method for assessing dose,response effects from a series of case,control and cohort studies in which the exposure information is interval censored. The interval censoring of the exposure variable is dealt with through the use of retrospective models in which the exposure is treated as a multinomial response and disease status as a binary covariate. Polychotomous logistic regression models are adopted in which the dose-response relationship between exposure and disease may be modeled in a discrete or continuous fashion. Partial conditioning is possible to eliminate some of the nuisance parameters. The methods are applied to the motivating study of the relationship between chorionic villus sampling and the occurrence of terminal transverse limb reduction. [source]