Zipper Motif (zipper + motif)

Distribution by Scientific Domains

Kinds of Zipper Motif

  • leucine zipper motif


  • Selected Abstracts


    FIAT represses bone matrix mineralization by interacting with ATF4 through its second leucine zipper

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2008
    Vionnie W.C. Yu
    Abstract We have characterized FIAT, a 66 kDa leucine zipper (LZ) protein that dimerizes with activating transcription factor 4 (ATF4) to form inactive dimers that cannot bind DNA. Computer analysis identifies three putative LZ motifs within the FIAT amino acid sequence. We have used deletion- and/or site-specific mutagenesis to individually inactivate these motifs in order to identify the functional LZ that mediates the FIAT,ATF4 interaction. Amino acids 194,222 that encode the FIAT LZ2 were deleted (mutant FIAT ZIP2 DEL). We inactivated each zipper individually by replacing two or three leucine residues within each zipper by alanine residues. The engineered mutations were L142A/L149A (mutant M1, first zipper), L208A/L215A/L222A (mutant M2, second zipper), and L441A/L448A (mutant M3, third zipper). MC3T3-E1 osteoblastic cells with an integrated 1.3 kb mouse osteocalcin gene promoter fragment driving expression of luciferase were transfected with expression vectors for ATF4 and the various FIAT deletion- or site-specific mutants. Inhibition of ATF4-mediated transcription was compared between wild-type (WT) and LZ FIAT mutants. The deletion mutant FIAT ZIP2 DEL and the sequence-specific M2 mutant did not interact with ATF4 and were unable to inhibit ATF4-mediated transcription. The M1 or M3 mutations did not affect the ability of FIAT to contact ATF4 or to inhibit its transcriptional activity. Stable expression of WT FIAT in osteoblastic cells inhibited mineralization, but not expression of the FIAT ZIP2 DEL and M2 mutants. This structure,function analysis reveals that FIAT interacts with ATF4 and modulates its activity through its second leucine zipper motif. J. Cell. Biochem. 105: 859,865, 2008. © 2008 Wiley-Liss, Inc. [source]


    Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli

    MOLECULAR MICROBIOLOGY, Issue 1 2009
    Goran Jovanovic
    Summary The phage shock protein (Psp) system found in enterobacteria is induced in response to impaired inner membrane integrity (where the Psp response is thought to help maintain the proton motive force of the cell) and is implicated in the virulence of pathogens such as Yersinia and Salmonella. We provided evidence that the two-component ArcAB system was involved in induction of the Psp response in Escherichia coli and now report that role of ArcAB is conditional. ArcAB, predominantly through the action of ArcA regulated genes, but also via a direct ArcB,Psp interaction, is required to propagate the protein IV (pIV)-dependent psp -inducing signal(s) during microaerobiosis, but not during aerobiosis or anaerobiosis. We show that ArcB directly interacts with the PspB, possibly by means of the PspB leucine zipper motif, thereby allowing cross-communication between the two systems. In addition we demonstrate that the pIV-dependent induction of psp expression in anaerobiosis is independent of PspBC, establishing that PspA and PspF can function as a minimal Psp system responsive to inner membrane stress. [source]


    Sequence-specific recognition of DNA by hydrophobic, alanine-rich mutants of the basic region/leucine zipper motif investigated by fluorescence anisotropy

    BIOPOLYMERS, Issue 1 2002
    Gregory H. Bird
    Abstract We generated minimalist proteins capable of sequence-specific, high-affinity binding of DNA to probe how proteins are used and can be used to recognize DNA. In order to quantify binding affinities and specificities in our protein,DNA system, we used fluorescence anisotropy to measure in situ the thermodynamics of binding of alanine-rich mutants of the GCN4 basic region/leucine zipper (bZIP) domain to DNA duplexes containing target sites AP-1 (5,-TGACTCA-3,) or ATF/CREB (5,-TGACGTCA-3,). We simplified the ,-helical bZIP molecular recognition scaffold by alanine substitution: 4A, 11A, and 18A contain four, eleven, and eighteen alanine mutations in their DNA-binding basic regions, respectively. DNase I footprinting analysis demonstrates that all bZIP mutants retain the sequence-specific DNA-binding function of native GCN4 bZIP. Titration of fluorescein-labeled oligonucleotide duplexes with increasing amounts of protein yielded low nanomolar dissociation constants for all bZIP mutants in complex with the AP-1 and ATF/CREB sites: binding to the nonspecific control duplex was > 1000-fold weaker. Remarkably, the most heavily mutated protein 18A, containing 24 alanines in its 27-residue basic region, still binds AP-1 and ATF/CREB with dissociation constants of 15 and 7.8 nM, respectively. Similarly, wild-type bZIP binds these sites with Kd values of 9.1 and 14 nM. 11A also displays low nanomolar dissociation constants for AP-1 and ATF/CREB, while 4A binds these sites with , 10-fold weaker Kd values. Thus, both DNA-binding specificity and affinity are maintained in all our bZIP derivatives. This Ala-rich scaffold may be useful in design and synthesis of small ,-helical proteins with desired DNA-recognition properties capable of serving as therapeutics targeting transcription. © 2002 Wiley Periodicals, Inc. Biopolymers 65: 10,20, 2002 [source]


    Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathway

    CANCER SCIENCE, Issue 6 2010
    Zhen Zhao
    Rab5a is a regulatory guanosine triphosphatase that is associated with the transport and fusion of endocytic vesicles, and participates in regulation of intracellular signaling pathways embraced by cells to adapt to the specific environment. Rab5a is also correlated with lung, stomach, and hepatocellular carcinomas. Here, we detected Rab5a in paraffin-embedded samples of 20 ovarian cysts, 20 benign cystadenomas, and 39 ovarian cancers by immunohistochemistry, and observed that Rab5a expression was significantly higher in ovarian cancer (P = 0.0001). By setting up stable HO-8910 cell lines expressing Rab5a or dominant negative Rab5a (Rab5a:S34N), we found that Rab5a overexpression enhanced the cell growth by promoting G1 into S phase. In contrast, Rab5a:S34N inhibited this process. Additionally, APPL1 (adaptor protein containing PH domain, PTB domain, and Leucine zipper motif), a downstream effector of Rab5a, was also involved in promoting HO-8910 cell cycle progress. But this function was blocked by Rab5a:S34N. Laser scanning confocal microscopy represented the colocalization of APPL1 and Rab5a in the plasmolemma, which changed with the time of epidermal growth factor (EGF) stimulation. We also found APPL1 could transfer from the membranes into the nucleus where it interacted with NuRD/MeCP1 (the nucleosome remodeling and histone deacetylase multiprotein complex). NuRD is reported to be involved in the deacetylation of histone H3 and H4 to regulate nuclear transcription. So Rab5a promoted proliferation of ovarian cancer cells, which may be associated with the APPL1-related epidermal growth factor signaling pathway. (Cancer Sci 2010) [source]


    A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality,

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 11 2006
    Nicholas A. Salmon
    Abstract Outer dense fiber 2 (Odf2) is highly expressed in the testis where it encodes a major component of the outer dense fibers of the sperm flagellum. Furthermore, ODF2 protein has recently been identified as a widespread centrosomal protein. While the expression of Odf2 highlighted a potential role for this gene in male germ cell development and centrosome function, the in vivo function of Odf2 was not known. We have generated Odf2 knockout mice using an Odf2 gene trapped embryonic stem cell (ESC) line. Insertion of a gene trap vector into exon 9 resulted in a gene that encodes a severely truncated protein lacking a large portion of its predicted coil forming domains as well as both leucine zipper motifs that are required for protein,protein interactions with ODF1, another major component of the outer dense fibers. Although wild-type and heterozygous mice were recovered, no mice homozygous for the Odf2 gene trap insertion were recovered in an extended breeding program. Furthermore, no homozygous embryos were found at the blastocyst stage of embryonic development, implying a critical pre-implantation role for Odf2. We show that Odf2 is expressed widely in adults and is also expressed in the blastocyst stage of preimplantation development. These findings are in contrast with early studies reporting Odf2 expression as testis specific and suggest that embryonic Odf2 expression plays a critical role during preimplantation development in mice. genesis 44:515,522, 2006. Published 2006 Wiley-Liss, Inc. [source]