Home About us Contact | |||
Zinc-finger Domain (zinc-finger + domain)
Selected AbstractsZic4, a zinc-finger transcription factor, is expressed in the developing mouse nervous systemDEVELOPMENTAL DYNAMICS, Issue 3 2005Carles Gaston-Massuet Abstract Zic genes comprise a family of transcription factors, characterized by the presence of a zinc-finger domain containing two cysteines and two histidines (C2-H2). Whereas the embryonic expression patterns of Zic1, 2, 3, and 5 have been described in detail, Zic4 has not yet received close attention. We studied the expression of Zic4 by in situ hybridization during mouse embryogenesis. Zic4 mRNA was first detected at low intensity at embryonic day (E) 9 and, by E10.5, expression was up-regulated in the dorsal midline of the forebrain with a strong, expanded expression domain at the boundary between the diencephalon and telencephalon, the septum, and the lamina terminalis. The choroid plexus of the third ventricle expresses Zic4, as does the dorsal part of the spinal neural tube, excluding the roof plate. The dorsal sclerotome and the dorsomedial lip of the dermomyotome also express Zic4 whereas dorsal root ganglia are negative. At E12.5, Zic4 continues to be expressed in the midline of the forebrain and in the dorsal spinal neural tube. Postnatally, Zic4 is expressed in the granule cells of the postnatal day 2 cerebellum, and in the periventricular thalamus and anterior end of the superior colliculus. We conclude that Zic4 has an expression pattern distinct from, but partly overlapping with, other members of the Zic gene family. Developmental Dynamics 233:1110,1115, 2005. © 2005 Wiley-Liss, Inc. [source] Solution structure of a zinc-finger domain that binds to poly-ADP-riboseGENES TO CELLS, Issue 2 2010Shin Isogai Poly-ADP-ribosylation is a unique post-translational modification that controls various nuclear events such as repair of DNA single-strand breaks. Recently, the protein containing the poly-ADP-ribose (pADPr)-binding zinc-finger (PBZ) domain was shown to be a novel AP endonuclease and involved in a cell cycle checkpoint. Here, we determined the three-dimensional structure of the PBZ domain from Drosophila melanogaster CG1218-PA using NMR spectroscopy. The domain folds into a C2H2-type zinc-finger structure in an S configuration, containing a characteristic loop between the zinc-coordinating cysteine and histidine residues. This is distinct from the structure of other C2H2-type zinc fingers. NMR signal changes that occur when pADPr binds to the PBZ domains from CG1218-PA and human checkpoint with FHA (forkhead-associated) and ring finger (CHFR) and mutagenesis suggest that a surface relatively well conserved among PBZ domains may serve as a major interface with pADPr. [source] Ligand-independent Regulation of the hairless Promoter by Vitamin D Receptor,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2008Andrew Engelhard The characteristic alopecia associated with mutations in the hairless (hr) and vitamin D receptor (VDR) genes defines the resulting genetic disorders, known as atrichia and VDRRIIa rickets, as phenocopies. In both cases, the separation of the dermal papilla from the regressing hair follicle at the onset of the first catagen phase of the hair cycle and the development of dermal cysts and utricules subsequent to mutation of either gene suggests that their activities affect the same regulatory pathways. VDR functions as a hormonally activated transcription factor, and a role in transcription has been postulated for Hr due in part to its nuclear localization and homology with the GATA-1 zinc-finger domain. Therefore, we examined the hypothesis that VDR and Hr have a direct regulatory effect on each other via a transcriptional mechanism. Ectopic expression of the VDR repressed hr promoter activity in HaCaT cells and primary human keratinocytes (PHKs). While this repression occurs in the absence of 1,25 dihydroxyvitamin D3 (D3), the addition of ligand greatly augments the effect. However, we also demonstrate the rare phenomenon of ligand-independent promoter transactivation by VDR. We show that the full-length promoter is transactivated by VDR in a ligand-independent and cell type-specific manner, suggesting that direct transcriptional regulation of hr by the VDR accounts in part for the phenotypic overlap between atrichia and VDRRIIa rickets. [source] Purification, crystallization and initial X-ray diffraction study of the zinc-finger domain of zebrafish NanosACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2009Hiroshi Hashimoto Nanos is a highly conserved RNA-binding protein in higher eukaryotes and acts as a key regulator protein involved in translational control utilizing the 3, untranslated region of mRNA. The C-terminal domain of Nanos has two conserved and novel CCHC-type zinc-finger motifs that are responsible for the function of Nanos. To clarify the structural basis of the function of Nanos, the C-terminal domain (residues 59,159) of zebrafish Nanos was overexpressed, purified and crystallized. The crystal belonged to space group P63, with unit-cell parameters a = b = 100.9, c = 71.5,Å, , = 120°. Structure determination by the MAD/SAD method is now in progress. [source] The WRKY Gene Family in Rice (Oryza sativa)JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2007Christian A. Ross Abstract WRKY genes encode transcription factors that are involved in the regulation of various biological processes. These zinc-finger proteins, especially those members mediating stress responses, are uniquely expanded in plants. To facilitate the study of the evolutionary history and functions of this supergene family, we performed an exhaustive search for WRKY genes using HMMER and a Hidden Markov Model that was specifically trained for rice. This work resulted in a comprehensive list of WRKY gene models in Oryza sativa L. ssp. indica and L. ssp. japonica. Mapping of these genes to individual chromosomes facilitated elimination of the redundant, leading to the identification of 98 WRKY genes in japonica and 102 in indica rice. These genes were further categorized according to the number and structure of their zinc-finger domains. Based on a phylogenetic tree of the conserved WRKY domains and the graphic display of WRKY loci on corresponding indica and japonica chromosomes, we identified possible WRKY gene duplications within, and losses between the two closely related rice subspecies. Also reviewed are the roles of WRKY genes in disease resistance and responses to salicylic acid and jasmonic acid, seed development and germination mediated by gibberellins, other developmental processes including senescence, and responses to abiotic stresses and abscisic acid in rice and other plants. The signaling pathways mediating WRKY gene expression are also discussed. [source] |