Home About us Contact | |||
Yield Strength (yield + strength)
Selected AbstractsTensile strength equation for HSS bracing members having slotted end connectionsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2007Sang-Whan Han Abstract In the previous study, the authors investigated the effect of w/t ratios on the behaviour of bracing members under symmetric cyclic loading in compression and tension. In this study, 11 bracing members with slotted end sections made of cold-formed square hollow structural sections (HSS) were tested. The w/t ratios ranged from 8 to 28. Unlike the test results of other former studies obtained under compression-oriented cyclic loading, the results of this study showed that bracing members having a smaller w/t ratio (<14) had less deformation and less energy dissipation capacity, and a shorter fracture life compared with other specimens. Such inferior behaviour resulted from early fracture at the slotted end section. This study compares tensile strength obtained from the design equations in the AISC LRFD manual and Eurocode 3 using the actual strengths of the tested specimens. This study found that for preventing early fracture in HSS bracing members, design fracture strength should be larger than design yield strength. Design strength equations are proposed for bracing members in special concentrically braced frames (SCBF). The proposed design equations are verified by experimental tests conducted under symmetric cyclic loading in tension and compression using two HSS bracing members designed according to the proposed equation. Copyright © 2007 John Wiley & Sons, Ltd. [source] Seismic performance and new design procedure for chevron-braced framesEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2006Edoardo M. Marino Abstract The paper is concerned with the seismic design of steel-braced frames in which the braces are configured in a chevron pattern. According to EuroCode 8 (EC8), the behaviour factor q, which allows for the trade-off between the strength and ductility, is set at 2.5 for chevron-braced frames, while 6.5 is assigned for most ductile steel moment-resisting frames. Strength deterioration in post-buckling regime varies with the brace's slenderness, but EC8 adopts a unique q value irrespective of the brace slenderness. The study focuses on reevaluation of the q value adequate for the seismic design of chevron-braced frames. The present EC8 method for the calculation of brace strength supplies significantly different elastic stiffnesses and actual strengths for different values of brace slenderness. A new method to estimate the strength of a chevron brace pair is proposed, in which the yield strength (for the brace in tension) and the post-buckling strength (for the brace in compression) are considered. The new method ensures an identical elastic stiffness and a similar strength regardless of the brace slenderness. The advantage of the proposed method over the conventional EC8 method is demonstrated for the capacity of the proposed method to control the maximum inter-storey drift. The q values adequate for the chevron-braced frames are examined in reference to the maximum inter-storey drifts sustained by most ductile moment-resisting frames. When the proposed method is employed for strength calculation, the q value of 3.5 is found to be reasonable. It is notable that the proposed method does not require larger cross-sections for the braces compared to the cross-sections required for the present EC8 method. Copyright © 2005 John Wiley & Sons, Ltd. [source] Equal Channel Angular Pressing of a Mg,3Al,1Zn Alloy with Back Pressure,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Feng Kang Abstract An extruded Mg,3Al,1Zn alloy bar is subjected to 1,4 passes equal channel angular pressing (ECAP) with or without 125,MPa backpressure via route Bc at 200,°C. Both strength and ductility are significantly increased after ECAP with backpressure; this is in strong contrast to the case of ECAP without backpressure, where significant improvement in ductility is accompanied by obvious decrease in yield strength from texture softening. Compared to ECAP without backpressure, much enhanced grain refinement, and the split of the dominant texture component of (0002) pole were observed with scatter intensity peaks in the case after ECAP with backpressure. This turns out to be resulted mainly from the activation of new slip system together with enhanced dynamic recrystallization under the effect of backpressure. The improvement of both strength and ductility in Mg,3Al,1Zn alloy through ECAP with back pressure provides a better approach to meet the engineering requests on comprehensive performance of this light alloy. [source] High-Strength Porous Copper by Cold-Extrusion,ADVANCED ENGINEERING MATERIALS, Issue 9 2008H. Utsunomiya The authors propose a method to fabricate porous metals with high strength in this paper. Pieces of matrix metal and space-holder metal are deformed together by bulk forming for solid-phase bonding. From the bonded composite, only the space-holder metal is removed. If the deformation and the removal are conducted at cold or warm region, ,wrought' high-strength porous metal can be obtained. In this study, using aluminum as space holder, two types of porous copper with one-dimensional pores, i.e., lotus-type and honeycomb-type rods, have been successfully fabricated by cold extrusion followed by chemical leaching. Both the porous coppers fabricated show higher specific yield strength than a conventional porous metal. [source] Semi-Solid Processing of Tailored Aluminium-Lithium Alloys for Automotive Applications,ADVANCED ENGINEERING MATERIALS, Issue 4 2007R. Sauermann Abstract This paper describes the development and evaluation of thixoformable Al-Li-Mg-based alloys performed at the collaborative research center SFB 289, RWTH Aachen. Scandium and zirconium were added to AlLi2.1Mg5.5 (A1420) with the aid of DoE (Design of Experiments), and precursor billets were manufactured by pressure induction melting (PIM). To evaluate the thixoformability of the synthesized alloys semi-solid processed connecting rods were manufactured by the rheo container process (RCP). Subsequent heat treatment raised the mechanical properties to maximum values of tensile strength, 430,MPa, yield strength of 250,MPa, and an elongation to fracture of 13,%. The RCP process was designed for the special requirements of highly reactive alloys. The paper presents the remarkable property and process benefits of the semi-solid processing of Al-Li alloys. [source] Modelling ductile fracture behaviour from deformation parameters in HSLA steelsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2004S. SIVAPRASAD ABSTRACT In this work, an attempt is made to model the ductile fracture behaviour of two Cu-strengthened high strength low alloy (HSLA) steels through the understanding of their deformation behaviour. The variations in deformation behaviour are imparted by prior deformation of steels to various predetermined strains. The variations in parameters such as yield strength and true uniform elongation with prior deformation is studied and was found to be analogous to that of initiation fracture toughness determined by independent method. A unique method is used to measure the crack tip deformation characterized by stretch zone depth that also depicted a similar trend. Fracture toughness values derived from the stretch zone depth measurements were found to vary in the same fashion as the experimental values. A semiempirical relationship for obtaining ductile fracture toughness from basic deformation parameters is derived and model is demonstrated to estimate initiation ductile fracture toughness accurately. [source] Inverse optimal design of cooling conditions for continuous quenching processesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2001Yimin Ruan Abstract This paper presents an inverse design methodology to obtain a required yield strength with an optimal cooling condition for the continuous quenching of precipitation hardenable sheet alloys. The yield strength of a precipitation hardenable alloy can be obtained by allowing solute to enter into solid solution at a proper temperature and rapidly cooling the alloy to hold the solute in the solid solution. An aging process may be needed for the alloy to develop the final mechanical property. The objective of the design is to optimize the quenching process so that the required yield strength can be achieved. With the inverse design method, the required yield strength is specified and the sheet thermal profile at the exit of the quenching chamber can also be specified. The conjugate gradient method is used to optimize the cooling boundary condition during quenching. The adjoint system is developed to compute the gradient of the objective functional. An aluminium sheet quenching problem is presented to demonstrate the inverse design method. Copyright © 2001 John Wiley & Sons, Ltd. [source] Modification of polypropylene by melt vibration blending with ultra high molecular weight polyethyleneADVANCES IN POLYMER TECHNOLOGY, Issue 3 2002Kejian Wang Abstract A novel vibration internal mixer was used to prepare polypropylene/ultra high molecular weight polyethylene PP/UHMWPE blends with two additional adjustable processing parameters (vibration frequency and vibration amplitude) as compared with those prepared in the steady mode. Microscopy, mechanical tests, and differential scanning calorimetry showed that vibration influenced the blend morphology and the product properties. The good phase homogeneity of the blends might be due to the variation of shear rate either spatially or temporally in blending. Additionally, the vibration internal mixer could be used to analyze the dependency of viscosity on the shear rate. Vibration enhanced the interpenetration of UHMWPE into PP and vice versa. Subsequently, the formed crystals of two components were connected, and there was epitaxy between PP and UHMWPE crystals. Moreover, the crystalline aggregates, with the amorphous UHMWPE, formed a complex network-like continuous structure, which improved the elongation ratio at the break and the yield strength. The higher the vibration frequency and/or the larger the vibration amplitude at a fixed average rotation speed of the mixer, the more significant these effects were. The larger amount of the connected crystals, especially of , form of PP in the bulk , form PP as well as with the continuous phase structure, led to a higher tensile properties of PP/UHMWPE vibration blended. © 2002 Wiley Periodicals, Inc. Adv Polym Techn 21: 164,176, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/adv.10020 [source] Influence of compatibilizer on notched impact strength and fractography of HDPE,organoclay compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009Waraporn Rattanawijan Abstract The focus of this study was the notched impact property of high-density polyethylene (HDPE),organoclay composites and the resultant morphology of impact-fractured surfaces. Composites with a different organoclay content and degree of organoclay dispersion were compared with neat HDPE under identical conditions. The degree of organoclay dispersion was controlled through the use of a compatibilizer, maleic anhydride grafted polyethylene. It was found that the addition of organoclay can slightly increase the elastic modulus and notched impact strength of the composite. When the level of organoclay dispersion was improved by using compatibilizer, elastic modulus and toughness further increased. A significant increase in yield strength was also notable. The presence of organoclay was found to suppress strain hardening of the matrix during tensile testing. The impact-fractured surfaces of failed specimens were studied with scanning electron microscopy. The micromechanism for the increased toughness of HDPE,organoclay composites was discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Radiopaque, barium sulfate-filled biomedical compounds of a poly(ether-block-amide) copolymerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Xiaoping Guo Abstract Various radiopaque compounds of a poly (ether- block -amide) copolymer resin filled with fine barium sulfate particles were prepared by melt mixing. Material properties of the filled compounds were investigated using various material characterization techniques, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic rheometry, uniaxial tensile test, and dynamic mechanical thermal analysis (DMTA). The effects of the filler and its concentration on the measured material properties are evaluated. It has been found that in addition to its well-known X-ray radiopacity, the filler is quite effective in reinforcing some mechanical properties of the copolymer, including modulus of elasticity and yield strength. More interestingly, it has been observed that at low loading concentrations near 10 wt %, the filler may also act as a rigid, inorganic toughener for the copolymer by improving the postyield material extensibility of strain hardening against ultimate material fracture. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Synthesis and evaluation of novel injectable and biodegradable polyglycolide-based compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2007Dong Xie Abstract Novel 3-arm methacrylate-endcapped biodegradable polyglycolide prepolymer was synthesized and characterized. Injectable and in situ curable composites formulated with the liquid prepolymer and bioabsorbable ,-tricalcium phosphate were prepared. The pastelike composites were cured at room temperature using a redox-initiation system. The initial compressive strengths (CSs), curing time, exotherm, and degree of conversion of the cured composites were determined. The composites showed initial yield CS ranging from 20.1 to 92.3 MPa, modulus from 0.73 to 5.65GPa, ultimate strength from 119.9 to 310.5 MPa, and toughness from 630 to 3930 N mm. Increasing filler content increased yield strength and modulus but decreased ultimate strength and toughness. Diametral tensile strength test showed the same trend as did CS test. Increasing filler content also increased curing time but decreased exotherm and degree of conversion. During the course of degradation, all the materials showed a significant burst degradation behavior within 24 h, followed by a significant increase in strength between Day 1 and Day 3, and then continuous degradation until no strength was detected. The composites with higher filler content retained their strengths longer but those with lower filler contents lost their strengths in 45 or 60 days. The degradation rate is filler-content dependent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2977,2984, 2007 [source] Analysis of the mechanical behavior of a titanium scaffold with a repeating unit-cell substructureJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2009Garrett Ryan Abstract Titanium scaffolds with controlled microarchitecture have been developed for load bearing orthopedic applications. The controlled microarchitecture refers to a repeating array of unit-cells, composed of sintered titanium powder, which make up the scaffold structure. The objective of this current research was to characterize the mechanical performance of three scaffolds with increasing porosity, using finite element analysis (FEA) and to compare the results with experimental data. Scaffolds were scanned using microcomputed tomography and FEA models were generated from the resulting computer models. Macroscale and unit-cell models of the scaffolds were created. The material properties of the sintered titanium powders were first evaluated in mechanical tests and the data used in the FEA. The macroscale and unit-cell FEA models proved to be a good predictor of Young's modulus and yield strength. Although macroscale models showed similar failure patterns and an expected trend in UCS, strain at UCS did not compare well with experimental data. Since a rapid prototyping method was used to create the scaffolds, the original CAD geometries of the scaffold were also evaluated using FEA but they did not reflect the mechanical properties of the physical scaffolds. This indicates that at present, determining the actual geometry of the scaffold through computed tomography imaging is important. Finally, a fatigue analysis was performed on the scaffold to simulate the loading conditions it would experience as a spinal interbody fusion device. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2009 [source] Development of a 95/5 poly(L -lactide- co -glycolide)/hydroxylapatite and ,-tricalcium phosphate scaffold as bone replacement material via selective laser sinteringJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008Rebecca Louise Simpson Abstract 95/5 Poly(L -lactide- co -glycolide) was investigated for the role of a porous scaffold, using the selective laser sintering (SLS) fabrication process, with powder sizes of 50,125 and 125,250 ,m. SLS parameters of laser power, laser scan speed, and part bed temperature were altered and the degree of sintering was assessed by scanning electron microscope. Composites of the 125,250 ,-tricalcium phosphate (CAMCERAM® II) were sintered, and SLS settings using 40 wt % CAMCERAM® II were optimized for further tests. Polymer thermal degradation during processing led to a reduction in number and weight averaged molecular weight of 9% and 12%, respectively. Compression tests using the optimized composite sintering parameters gave a Young's modulus, yield strength, and strain at 1% strain offset of 0.13 ± 0.03 GPa, 12.06 ± 2.53 MPa, and 11.39 ± 2.60%, respectively. Porosity was found to be 46.5 ± 1.39%. CT data was used to create an SLS model of a human fourth middle phalanx and a block with designed porosity was fabricated to illustrate the process capabilities. The results have shown that this composite and fabrication method has potential in the fabrication of porous scaffolds for bone tissue engineering. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tubeJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008S. W. Robertson Abstract Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue threshold, have recently been reported for the superelastic alloy Nitinol, in the product form of the thin-walled tube that is used to manufacture several biomedical devices, most notably endovascular stents. In this study, we use these critical parameters to construct simple decision criteria for assessing the quantitative effect of crack-like defects in such Nitinol devices with respect to their resistance to failure by deformation or fracture. The criteria are based on the (equivalent) crack-initiation fracture toughness and fatigue threshold stress-intensity range, together with the general yield strength and fatigue endurance strength, and are used to construct a basis for design against single-event (overload) failures as well as for time-/cycle-delayed failures associated with fatigue. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2008 [source] Quantifying effects of particulate properties on powder flow properties using a ring shear testerJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2008Hao Hou Abstract Effects of particle size, morphology, particle density, and surface silicification, on powder flow properties were investigated using a ring shear tester. Flow properties were quantified by flow function (FF), that is, unconfined yield strength, fc, as a function of major principal stress. A total of 11 powders from three series of microcrystalline cellulose (MCC): Avicel (regular MCC, elongated particles), Prosolv (silicified MCC, elongated particles), and Celphere (spherical MCC), were studied. Particle size distribution in each type of MCC was systematically different. Within each series, smaller particles always led to poorer powder flow properties. The slope of FF line was correlated to degree of powder consolidation by external stress. A key mechanism of the detrimental effect of particle size reduction on flow properties was the larger powder specific surface area. Flow properties of Celphere were significantly better than Avicel of comparable particles size, suggesting spherical morphology promoted better powder flow properties. Flow properties of powders different in densities but similar in particle size, shape, and surface properties were similar. When corrected for density effect, higher particle density corresponded to better flow behavior. Surface silicification significantly improved flow properties of finer MCC, but did not improve those of coarser. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4030,4039, 2008 [source] Coalescence of deformable granules in wet granulation processesAICHE JOURNAL, Issue 3 2000L. X. Liu In this work, the coalescence of deformable granules in wet granulation processes is modelled. The model accounts for both the mechanical properties of the granules and the effect of the liquid layer at the granule surface. It is an extension to the model of Ennis et al. (1991) to include the possibility of granule plastic deformation during collisions. The model is written in dimensionless groups such as viscous and deformation Stokes numbers and the ratio of granule dynamic yield strength to granule Young's modulus (Yd/E*). These variables are bulk parameters of the powder-binder mixture and also functions of the process intensity. The model gives the conditions for two types of coalescence,type I and type II. Type I coalescence occurs when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch. Type II coalescence occurs when granules are slowed to a halt during rebound, after their surfaces have made contact. The model explains some of the trends observed in the literature, are preliminary validation of the coalescence criterion with drum granulation data is encouraging. An extension is also made to the case of surface dry granules, where liquid is squeezed to the surface during granule deformation. [source] On Processing and Impact Deformation Behavior of High Density Polyethylene (HDPE),Calcium Carbonate NanocompositesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009Qiang Yuan Abstract Different processing approaches were adopted to obtain the best combination of strength and toughness. The approach that yielded superior properties was examined in detail to study the mechanical response of nanoscale calcium carbonate-reinforced high density polyethylene in conjunction with unreinforced high density polyethylene. The reinforcement of high density polyethylene with nanoscale calcium carbonate increases impact strength and is not accompanied by decrease in yield strength. The addition of nanoscale calcium carbonate to high density polyethylene alters the micromechanism of deformation from crazing-tearing in high density polyethylene to fibrillation in high density polyethylene,calcium carbonate nanocomposite. [source] Poly(propylene)/Clay Nanocomposites Prepared by Reactive Compounding with an Epoxy Based MasterbatchMACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2005Ling Chen Abstract Summary: Poly(propylene) (PP)/clay nanocomposites have been prepared via a novel reactive compounding approach, in which an epoxy based masterbatch consisting of 20 wt.-% clay was introduced to poly(propylene) with the aid of a maleic anhydride grafted PP (MAPP). The masterbatch was prepared using a recently developed "slurry compounding" technique. After melt compounding, most clay particles have been exfoliated and dispersed into small stacks with several clay layers. WAXD data shows that the dispersion of clay is better at low clay content or high MAPP content. Due to the novelty of the preparation process and complication of the system, the tensile properties of nanocomposites exhibit some unique tendencies with varying the content of MAPP or masterbatch. It is believed that the yield strength and Young's modulus can be dramatically improved after minimizing the excess of unreacted epoxy and optimizing the dispersion of clay. TEM micrograph of PP/clay nanocomposites prepared with epoxy based masterbatch. [source] Micromechanical behaviour of gel grown pure and doped potassium hydrogen tartrate single crystalsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 12 2009I. Quasim Abstract Micromechanical characteristics of (001) and (111) planes of gel grown pure, sodium- and lithium-doped potassium hydrogen tartrate single crystals as revealed by indentation induced technique are described. The indentation size effect (ISE) exhibited by the crystals is explained on application of proportional specimen resistance (PSR) model and the analytical law of Hays and Kendall. The load independent values of Vickers hardness of (001) and (111) planes of these crystals as indicated by indentation experiments and computed on the basis of PSR model and the analytical law are shown to be in good agreement. The doping by sodium or lithium results in the increase in hardness of potassium hydrogen tartrate crystals. The crystals exhibit hardness anisotropy. The values of yield strength of each plane of both pure and sodium and lithium doped potassium hydrogen tartrate single crystals are estimated using appropriate equations. [source] Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube-composites and its effect on their mechanical propertiesPOLYMER COMPOSITES, Issue 5 2010Amal M.K. Esawi Carbon nanotube-reinforced polymer composites are being investigated as promising new materials having enhanced physical and mechanical properties. With regards to mechanical behavior, the enhancements reported thus far by researchers are lower than the theoretical predictions. One of the key requirements to attaining enhanced behavior is a uniform dispersion of the nanotubes within the polymer matrix. Although solvent mixing has been used extensively, there are concerns that any remaining solvent within the composite may degrade its mechanical properties. In this work, a comparison is carried out between solvent and "solvent-free" dry mixing for dispersing multiwall carbon nanotubes in polypropylene before further melt mixing by extrusion. Various weight fractions of carbon nanotubes (CNTs) are added to the polymer and their effect on the mechanical properties of the resulting composites is investigated. Enhancements in yield strength, hardness, and Young's modulus when compared with the neat polymer, processed under similar conditions, are observed. Differences in mechanical properties and strain as a function of the processing technique (solvent or dry) are also clearly noted. In addition, different trends of enhancement of mechanical properties for the solvent and dry-mixed extrudates are observed. Dry mixing produces composites with the highest yield strength, hardness, and modulus at 0.5 wt% CNT, whereas solvent mixing produces the highest mechanical properties at CNT contents of 1 wt%. It is believed that this difference is primarily dependent on the dispersion of CNTs within the polymer matrix which is influenced by the processing technique. Field emission scanning electron microscopy analysis shows the presence of clusters in large wt% CNT samples produced by dry mixing. Samples produced by solvent mixing are found to contain homogeneously distributed CNTs at all CNT wt fractions. CNT pull-out is observed and may explain the limited enhancement in mechanical properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source] Temperature and strain rate dependences of yield stress of polypropylene composites reinforced with carbon nanofibersPOLYMER COMPOSITES, Issue 12 2009S.P. Bao Polypropylene (PP) nanocomposites filled with 0.1, 0.3, 0.5, and 1.0 wt% carbon nanofiber (CNF) were prepared via melt compounding in a twin-screw extruder followed by injection molding. The effects of CNF additions on the structure, mechanical and tensile yielding behavior of PP were investigated. TEM and SEM observations showed that CNFs were dispersed uniformly within PP matrix. Tensile test showed that the yield strength and Young's modulus of PP were improved considerably by adding very low CNF loadings. The reinforcing effect of CNF was also verified from the dynamic mechanical analysis. Impact measurement revealed that the CNF additions were beneficial to enhance the impact toughness of PP. The yield stress of the PP/CNF nanocomposites was found to be strain rate and temperature dependent. The yielding responses of PP/CNF nanocomposites can be described successfully by the Erying's equation and a reinforcing index n. The structure and mechanical property relationship of the nanocomposites is discussed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Micromechanics for fiber volume percent with a photocure vinyl ester compositePOLYMER COMPOSITES, Issue 3 2007Richard C. Petersen Micromechanics for fiber volume percent (Vf) from 0.0Vf to 54.0 Vf were conducted using (3 mm long × 9 ,m diameter) high-purity quartz fibers in a visible-light vinyl ester particulate-filled photocure resin. MTS fully articulated four-point bend fixtures were used with a 40 mm test span and 50 × 2 × 2 mm3 sample dimensions. Specimens were tested following the combined modified ASTM standards for advanced ceramics ASTM-C-1161,94 and polymers ASTM-D-6272,00 for modulus, flexural strength, and yield strength. Experimental data provided reliable statistical support for the dominant fiber contribution expressed through the rule-of-mixtures theory as a valid representation of micromechanical physics. The rule-of-mixtures micromechanics described by Vf could explain 92, 85, and 78% of the variability related to modulus, flexural strength, and yield strength respectively. Statistically significant improvements with fiber addition began at 10.3Vf for modulus, 5.4Vf for flexural strength, and 10.3Vf for yield strength, p < 0.05. In addition, correlation matrix analysis was performed for all mechanical test data. An increase in Vf correlated significantly with increases in modulus, flexural strength, and yield strength as measured by the four-point bending test, p < 10,10. All mechanical properties in turn correlated highly significantly with one another, p < 10,9. POLYM. COMPOS., 28:294,310, 2007. © 2007 Society of Plastics Engineers [source] Fracture behavior of polyetherimide (PEI) and interlaminar fracture of CF/PEI laminates at elevated temperaturesPOLYMER COMPOSITES, Issue 1 2005Ki-Young Kim To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode-I loading. The numerical analyses were based on 2-D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane-strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20,28, 2005. © 2004 Society of Plastics Engineers. [source] Effects of temperature and strain rate on the tensile behavior of unfilled and talc-filled polypropylene.POLYMER ENGINEERING & SCIENCE, Issue 12 2002Part I: Experiments The tensile behavior of unfilled and 40 w% talc-filled polypropylene has been determined at four different temperatures (21.5, 50, 75 and 100°C) and three different strain rates (0.05, 0.5 and 5 min,1). Experimental results showed that both unfilled and talc-filled polypropylenes were sensitive to strain rate and temperature. Stressstrain curves of both materials were nonlinear even at relatively low strains. The addition of talc to polypropylene increased the elastic modulus, but the yield strength and yield strain were reduced. The temperature and strain rate sensitivities of these materials were also different. An energy-activated, rate sensitive Eyring equation was used to predict the yield strength of both materials. It is shown that both activation volume and activation of energy increased with the addition of talc in polypropylene. [source] Failure mechanisms in stereolithography injection molding toolingPOLYMER ENGINEERING & SCIENCE, Issue 6 2000A. E. Palmer Stereolithography tooling is a form of rapid tooling that has been used to injection mold limited runs of prototype parts. However, the process is not well understood and tooling life for fine mold features is difficult to predict. Injection molding processing conditions and feature geometry affect the number of parts that can be made before a mold fails. To study the effects of feature geometry, general purpose polystyrene parts were injection molded in molds made of DSM Somos 7110 stereolithography resin. The ACES build style was used, and no polishing was performed on the mold. The experimental results were compared with theoretical models developed for the two failure mechanisms for raised features in a stereolithography mold,failures during injection due to the flow pressure of the injected polymer; and failures during ejection, whereby the part pulled out a feature of the mold. Injection failures occurred in taller mold features due to the force of flow and the feature's geometry. Ejection failures occurred in the shorter features when the stress from the ejection force (distributed over the bond area) exceeded the yield strength of the mold material. Models were developed to predict the number of parts that a mold could make before mold features break off and were validated through experimental results. [source] Effect of vibration extrusion on the structure and properties of high-density polyethylene pipesPOLYMER INTERNATIONAL, Issue 2 2009Chen Kaiyuan Abstract BACKGROUND: The axial strength of a plastic pipe is much higher than its circumferential strength due to the macromolecular orientation during extrusion. In this work, a custom-made electromagnetic dynamic plasticating extruder was adopted to extrude high-density polyethylene (HDPE) pipes. A vibration force field was introduced into the whole plasticating and extrusion process by axial vibration of the screw. The aim of superimposing a vibration force field was to change the crystalline structure of HDPE and improve the molecular orientation in the circumferential direction to obtain high-circumferential-strength pipes. RESULTS: Through vibration extrusion, the circumferential strength of HDPE pipes increased significantly, and biaxial self-reinforcement pipes could be obtained. The maximum increase of bursting pressure and tensile yield strength was 34.2 and 5.3%, respectively. According to differential scanning calorimetry and wide-angle X-ray diffraction measurements, the HDPE pipes prepared by vibration extrusion had higher crystallinity, higher melting temperature, larger crystal sizes and more perfect crystals. CONCLUSION: Vibration extrusion can effectively enhance the mechanical properties of HDPE pipes, especially the circumferential strength. The improvement of mechanical properties of HDPE pipes obtained by vibration extrusion can be attributed to the higher degree of crystallinity and the improvement of the molecular orientation and of the crystalline morphology. Copyright © 2008 Society of Chemical Industry [source] |