Home About us Contact | |||
YAG Laser Radiation (yag + laser_radiation)
Selected AbstractsRoot surface roughness following Er:YAG laser irradiation at different radiation energies and working tip angulationsJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 7 2002Matthias Folwaczny Abstract Objectives: The determination of roughness of root surfaces following treatment with 2.94 µm Er:YAG laser radiation at different radiation energies and working tip angulations. Materials and methods: The study sample comprised 85 extracted human molars, premolars, canines and incisors (n = 85). The source of laser radiation was an Er:YAG laser device (KAVO-Key II, System Aesculap Meditec) emitting pulsed infrared radiation at a wavelength of 2.94 µm, with a pulse duration of 250 µs, and a pulse repetition rate of 10 pps. The samples were randomly divided into three experimental units, for treatment with a constant amount of 380 laser pulses at a radiation energy of 60 mJ, 100 mJ, and 180 mJ. Each experimental unit was divided into five subgroups of five samples, which were irradiated at a working tip angulations of 15°, 30°, 45°, 60°, and 90°. Five samples were treated mechanically using curettes. Five samples were left untreated as control. The mean (Ra) and maximum (Rmax) surface roughness of each sample was measured using a profilometer. The statistical analysis was undertaken using anova and Scheffé-test at a level of significance of 5% (p < 0.05). Results: Er:YAG laser radiation led to an Ra which ranged from 0.52 µm (± 0.10) to 0.81 µm (± 0.26) and to an Rmax between 3.4 µm (± 0.48) and 9.26 µm (± 3.08). The Ra and Rmax for samples treated with curettes was 0.51 µm (± 0.11) and 5.08 µm (± 4.98), respectively. That for the untreated control samples were 0.53 µm (± 0.15) and 7.07 µm (± 5.48), respectively. Conclusions: The mean and maximum surface roughness of root surfaces following irradiation with Er:YAG laser was not significantly different to that obtained on samples treated with conventional hand instruments or left untreated. Furthermore, the surface roughness does not depend on the radiation energy and the angulation of the working tip. [source] Effect of Er:YAG and Diode lasers on the adhesion of blood components and on the morphology of irradiated root surfacesJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2006Letícia Helena Theodoro Objective:, The aim of this study was to evaluate in vitro, by scanning electron microscopy (SEM), the adhesion of blood components on root surfaces irradiated with Er:YAG (2.94 µm) and GaAlAs Diode (808 nm) lasers and the effects on the morphology of irradiated root surfaces. Methods:, One hundred samples of human teeth were obtained. They were previously planed and scaled with manual instruments and divided into five groups of 20 samples each: G1 (control group) , absence of treatment; G2 , Er:YAG laser (7.6 J/cm2); G3 , Er:YAG laser (12.9 J/cm2); G4 , Diode laser (90 J/cm2) and G5 , Diode laser (108 J/cm2). After these treatments, 10 samples of each group received a blood tissue but the remaining 10 did not. After laboratory treatments, the samples were obtained by SEM, the photomicrographs were analysed by the score of adhesion of blood components and the results were statistically analysed (Kruskall,Wallis and Mann,Whitney test). Results:, In relation to the adhesion of blood components, the study showed no significant differences between the control group and the groups treated with Er:YAG laser (p = 0.9633 and 0.6229). Diode laser radiation was less effective than control group and Er:YAG laser radiation (p < 0.01). Conclusions:, None of the proposed treatments increased the adhesion of blood components in a significant way when compared to the control group. Although the Er:YAG laser did not interfere in the adhesion of blood components, it caused more changes on the root surface, whereas the Diode laser inhibited the adhesion. [source] Nd:YAG laser interaction with mine wrapping materialsLASER PHYSICS LETTERS, Issue 2 2004T. Rothacher Abstract According to UN publications landmines are a daily threat in approximately 70 countries of the world. There exist different ways to destroy detected antipersonnel mines. Neutralisation of mines with laser is a possibility that offers several advantages like working from safe distance and possibly mine destruction by deflagration and without explosion. Previous work has shown the importance of an absorbing mine wrapping material to achieve the desired burning process. In this paper, interaction of Nd:YAG laser radiation with different realistic synthetic mine wrapping materials is investigated. Penetration duration of laser radiation at , = 1.064 ,m through samples with different thickness is measured. Penetration through all tested materials is achieved at an incident power of 28.8 W. With an investigated material thickness up to 3 mm, penetration duration is in the range of seconds. Also penetration through a real mine case consisting of bakelite is achieved. (© 2004 by HMS Consultants. Inc. Published exclusively by WILEY-VCH Verlag GmbH & Co.KGaA) [source] Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium: YAG laser radiationLASERS IN SURGERY AND MEDICINE, Issue 8 2006Travis J. Polletto BS Abstract Background and Objectives Endoscopic applications of the Erbium:YAG laser have been limited due to the lack of a suitable optical fiber delivery system. The purpose of this study was to compare the transmission of Er:YAG laser radiation through germanium oxide trunk fibers with silica and sapphire fiber tips for potential use in contact tissue ablation during endoscopy. Study Design/Materials and Methods Er:YAG laser radiation with a wavelength of 2.94 µm, pulse length of 300 microseconds, pulse energies from 5 to 1,360 mJ, coupled into pulse repetition rates of 3,10 Hz, was through 1-m-long germanium oxide fibers with either 1-cm-long, 550-µm-diameter silica or sapphire tips. Results Transmission through the germanium oxide/sapphire fibers measured 65±5% compared with 55±4% for the germanium oxide/silica fibers (P<0.05). The damage threshold for the hybrid fibers averaged 309± 44 mJ and 126±43 mJ, respectively (n,=,7 fibers each) (P<0.05). The highest pulse energies transmitted through the fibers were 700 mJ and 220 mJ, respectively. Conclusions Improved index-matching of the trunk fiber and fiber tip at 2.94 µm resulted in higher transmission and damage thresholds for the germanium oxide/sapphire fibers. The germanium oxide/sapphire fiber may represent a promising mid-infrared optical fiber delivery system for use in endoscopic applications of the Er:YAG laser requiring a flexible, biocompatible, and robust fiber delivery system for contact tissue ablation. Lasers Surg. Med. 38:787,791, 2006. © 2006 Wiley-Liss, Inc. [source] Hybrid germanium/silica optical fibers for endoscopic delivery of erbium:YAG laser radiationLASERS IN SURGERY AND MEDICINE, Issue 1 2004Charles A. Chaney MS Abstract Background and Objectives Endoscopic applications of the erbium (Er):YAG laser have been limited due to the lack of an optical fiber delivery system that is robust, flexible, and biocompatible. This study reports the testing of a hybrid germanium/silica fiber capable of delivering Er:YAG laser radiation through a flexible endoscope. Study Design/Materials and Methods Hybrid optical fibers were assembled from 1-cm length, 550-,m core, silica fiber tips attached to either 350- or 425-,m germanium oxide "trunk" fibers. Er:YAG laser radiation (,,=,2.94 ,m) with laser pulse lengths of 70 and 220 microseconds, pulse repetition rates of 3,10 Hz, and laser output energies of up to 300 mJ was delivered through the fibers for testing. Results Maximum fiber output energies measured 180±30 and 82±20 mJ (n,=,10) under straight and tight bending configurations, respectively, before fiber interface damage occurred. By comparison, the damage threshold for the germanium fibers without silica tips during contact soft tissue ablation was only 9 mJ (n,=,3). Studies using the hybrid fibers for lithotripsy also resulted in fiber damage thresholds (55,114 mJ) above the stone ablation threshold (15,23 mJ). Conclusions Hybrid germanium/silica fibers represent a robust, flexible, and biocompatible method of delivering Er:YAG laser radiation during contact soft tissue ablation. However, significant improvement in the hybrid fibers will be necessary before they can be used for efficient Er:YAG laser lithotripsy. Lasers Surg. Med. 34:5,11, 2004. © 2004 Wiley-Liss, Inc. [source] |