Home About us Contact | |||
Xylitol Yield (xylitol + yield)
Selected AbstractsEffect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiaeLETTERS IN APPLIED MICROBIOLOGY, Issue 2 2007J. Hou Abstract Aims:, To determine the effects on xylitol accumulation and ethanol yield of expression of mutated Pichia stipitis xylitol dehydrogenase (XDH) with reversal of coenzyme specificity in recombinant Saccharomyces cerevisiae. Methods and Results:, The genes XYL2 (D207A/I208R/F209S) and XYL2 (S96C/S99C/Y102C/D207A/I208R/F209S) were introduced into S. cerevisiae, which already contained the P. stipitis XYL1 gene (encoding xylose reductase, XR) and the endogenously overexpressed XKS1 gene (encoding xylulokinase, XK). The specific activities of mutated XDH in both strains showed a distinct increase in NADP+ -dependent activity in both strains with mutated XDH, reaching 0·782 and 0·698 U mg,1. In xylose fermentation, the strain with XDH (D207A/I208R/F209S) had a large decrease in xylitol and glycerol yield, while the xylose consumption and ethanol yield were decreased. In the strain with XDH (S96C/S99C/Y102C/D207A/I208R/F209S), the xylose consumption and ethanol yield were also decreased, and the xylitol yield was increased, because of low XDH activity. Conclusions:, Changing XDH coenzyme specificity was a sufficient method for reducing the production of xylitol, but high activity of XDH was also required for improved ethanol formation. Significance and Impact of the Study:, The difference in coenzyme specificity was a vital parameter controlling ethanolic xylose fermentation but the XDH/XR ratio was also important. [source] Analysis of NADPH supply during xylitol production by engineered Escherichia coliBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Jonathan W. Chin Abstract Escherichia coli strain PC09 (,xylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167,1176]. This study aims to understand the role of NADPH supply in xylitol yield and the contribution of key central carbon metabolism enzymes toward xylitol production. Studies in which the expression of CbXR or a xylose transporter was increased suggest that enzyme activity and xylose transport are not limiting xylitol production in PC09. A constraints-based stoichiometric metabolic network model was used to understand the roles of central carbon metabolism reactions and xylose transport energetics on the theoretical maximum molar xylitol yield (xylitol produced per glucose consumed), and xylitol yields (YRPG) were measured from resting cell biotransformations with various PC09 derivative strains. For the case of xylose-proton symport, omitting the Zwf (glucose-6-phosphate dehydrogenase) or PntAB (membrane-bound transhydrogenase) reactions or TCA cycle activity from the model reduces the theoretical maximum yield from 9.2 to 8.8, 3.6, and 8.0 mol xylitol (mol glucose),1, respectively. Experimentally, deleting pgi (encoding phosphoglucose isomerase) from strain PC09 improves the yield from 3.4 to 4.0 mol xylitol (mol glucose),1, while deleting either or both E. coli transhydrogenases (sthA and pntA) has no significant effect on the measured yield. Deleting either zwf or sucC (TCA cycle) significantly reduces the yield from 3.4 to 2.0 and 2.3 mol xylitol (mol glucose),1, respectively. Expression of a xylose reductase with relaxed cofactor specificity increases the yield to 4.0. The large discrepancy between theoretical maximum and experimentally determined yield values suggests that biocatalysis is compromised by pathways competing for reducing equivalents and dissipating energy. The metabolic role of transhydrogenases during E. coli biocatalysis has remained largely unspecified. Our results demonstrate the importance of direct NADPH supply by NADP+ -utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions, and suggest that the pool of reduced cofactors available for biotransformation is not readily interchangeable via transhydrogenase. Biotechnol. Bioeng. 2009;102: 209,220. © 2008 Wiley Periodicals, Inc. [source] Xylitol Production from Sugarcane Bagasse Hydrolyzate in Fluidized Bed Reactor.BIOTECHNOLOGY PROGRESS, Issue 4 2003Effect of Air Flowrate Cells of Candida guilliermondiiimmobilized onto porous glass spheres were cultured batchwise in a fluidized bed bioreactor for xylitol production from sugarcane bagasse hemicellulose hydrolyzate. An aeration rate of only 25 mL/min ensured minimum yields of xylose consumption (0.60) and biomass production (0.14 gDM/gXyl), as well as maximum xylitol yield (0.54 gXyt/gXyl) and ratio of immobilized to total cells (0.83). These results suggest that cell metabolism, although slow because of oxygen limitation, was mainly addressed to xylitol production. A progressive increase in the aeration rate up to 140 mL/min accelerated both xylose consumption (from 0.36 to 0.78 gXyl/L·h) and xylitol formation (from 0.19 to 0.28 gXyt/L·h) but caused the fraction of immobilized to total cells and the xylitol yield to decrease up to 0.22 and 0.36 gXyt/gXyl, respectively. The highest xylitol concentration (17.0 gXyt/L) was obtained at 70 mL/min, but the specific xylitol productivity and the xylitol yield were 43% and 22% lower than the corresponding values obtained at the lowest air flowrate, respectively. The concentrations of consumed substrates and formed products were used in material balances to evaluate the xylose fractions consumed by C. guilliermondii for xylitol production, complete oxidation through the hexose monophosphate shunt, and cell growth. The experimental data collected at variable oxygen level allowed estimating a P/O ratio of 1.35 molATP/molO and overall ATP requirements for biomass growth and maintenance of 3.4 molATP/C-molDM. [source] Analysis of NADPH supply during xylitol production by engineered Escherichia coliBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Jonathan W. Chin Abstract Escherichia coli strain PC09 (,xylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167,1176]. This study aims to understand the role of NADPH supply in xylitol yield and the contribution of key central carbon metabolism enzymes toward xylitol production. Studies in which the expression of CbXR or a xylose transporter was increased suggest that enzyme activity and xylose transport are not limiting xylitol production in PC09. A constraints-based stoichiometric metabolic network model was used to understand the roles of central carbon metabolism reactions and xylose transport energetics on the theoretical maximum molar xylitol yield (xylitol produced per glucose consumed), and xylitol yields (YRPG) were measured from resting cell biotransformations with various PC09 derivative strains. For the case of xylose-proton symport, omitting the Zwf (glucose-6-phosphate dehydrogenase) or PntAB (membrane-bound transhydrogenase) reactions or TCA cycle activity from the model reduces the theoretical maximum yield from 9.2 to 8.8, 3.6, and 8.0 mol xylitol (mol glucose),1, respectively. Experimentally, deleting pgi (encoding phosphoglucose isomerase) from strain PC09 improves the yield from 3.4 to 4.0 mol xylitol (mol glucose),1, while deleting either or both E. coli transhydrogenases (sthA and pntA) has no significant effect on the measured yield. Deleting either zwf or sucC (TCA cycle) significantly reduces the yield from 3.4 to 2.0 and 2.3 mol xylitol (mol glucose),1, respectively. Expression of a xylose reductase with relaxed cofactor specificity increases the yield to 4.0. The large discrepancy between theoretical maximum and experimentally determined yield values suggests that biocatalysis is compromised by pathways competing for reducing equivalents and dissipating energy. The metabolic role of transhydrogenases during E. coli biocatalysis has remained largely unspecified. Our results demonstrate the importance of direct NADPH supply by NADP+ -utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions, and suggest that the pool of reduced cofactors available for biotransformation is not readily interchangeable via transhydrogenase. Biotechnol. Bioeng. 2009;102: 209,220. © 2008 Wiley Periodicals, Inc. [source] |