Xylem Vessels (xylem + vessel)

Distribution by Scientific Domains

Selected Abstracts

Cell wall composition of vascular and parenchyma tissues in broccoli stems

S Müller
Abstract Broccoli stems can become tough and stringy owing to excessive development of the vascular ring. Thickened cell walls from the vascular ring were isolated and their composition was determined. They were derived principally from anatomically recognisable xylem vessels, fibres and tracheids but contained an assemblage of polysaccharides typical of primary cell walls. Their pectin content was particularly high and they contained only 6% lignin as estimated by solid state 13C NMR spectroscopy. They did not differ markedly in composition from parenchyma cell walls within the same stems. Thus, despite their thickness and anatomical appearance, these cell walls resembled the walls of non-woody cells in their polymer composition. Copyright © 2003 Society of Chemical Industry [source]

Effects of water storage in the stele on measurements of the hydraulics of young roots of corn and barley

Ankur Joshi
Summary ,,In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. ,,Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. ,,When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. ,,It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored. [source]

A potent, morph-specific parturition stimulant in the overwintering host plant of the black bean aphid, Aphis fabae

Glen Powell
Abstract. The black bean aphid, Aphis fabae Scopoli, has a host-alternating life cycle. Winged female autumn migrants (gynoparae) develop on numerous summer host plants but as adults will only colonize the winter host (spindle, Euonymus europaeus L.). When stylet activities of gynoparae were electrically recorded during access to a spindle leaf, the insects spent the majority (75%) of the 6-h experimental period penetrating the plant surface and a large proportion of it (44%) ingesting from either phloem or xylem vessels. Most (95%) gynoparae initiated reproduction on spindle, producing 4.15 ± 0.59 offspring per adult by the end of the experiment (mean ± SEM). By contrast, gynoparae placed on a seedling of their natal, summer host (broad bean, Vicia faba L.) penetrated the plant for only 39% of the available time, rarely ingested plant sap and never reproduced. The number of nymphs deposited on spindle leaves was not correlated with the occurrence or duration of ingestion from vascular tissues, suggesting that parturition stimulants are detected before feeding, probably during penetration of nonvascular cells. Presentation of an aqueous spindle extract to the aphids in artificial feeding chambers showed that water-soluble spindle factors evoke stimulation of parturition by gynoparae in 72-h bioassays. The stimulant was extremely potent, remaining active until the total extracted material was diluted to less than 10 p.p.m. Stylet activities and reproductive responses were also evaluated for summer winged females (alate virginoparae), which have a broad host range, and will colonize both bean and spindle under laboratory conditions. On both of these plant species, virginoparae often ingested plant sap and deposited nymphs during the 6-h electrical recording experiment (producing 4.60 ± 0.48 offspring on bean; 2.70 ± 0.35 on spindle: mean ± SEM), but no significant correlations were found between reproduction and the occurrence or duration of particular stylet activities. Aqueous host-plant extracts had no effect on the numbers of offspring deposited by virginoparae in artificial feeding chambers, showing that this form of the aphid is not responsive to the spindle-derived parturition stimulant. The results highlight the need for more information on the factors determining host acceptance and parturition by polyphagous aphid phenotypes. [source]

Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment?

ABSTRACT Eucalyptus pauciflora Sieber ex Sprengel. (snow gum) was grown under ambient (370 µL L,1) and elevated (700 µL L,1) atmospheric [CO2] in open-top chambers (OTCs) in the field and temperature-controlled glasshouses. Nitrogen applications to the soil ranged from 0.1 to 2.75 g N per plant. Trees in the field at high N levels grew rapidly during summer, particularly in CO2 -enriched atmosphere, but suffered high mortality during summer heatwaves. Generally, wider and more numerous secondary xylem vessels at the root,shoot junction in CO2 -enriched trees conferred fourfold higher below-ground hydraulic conductance. Enhanced hydraulic capacity was typical of plants at elevated [CO2] (in which root and shoot growth was accelerated), but did not result from high N supply. However, because high rates of N application consistently made trees prone to dehydration during heatwaves, glasshouse studies were required to identify the effect of N nutrition on root development and hydraulics. While the effects of elevated [CO2] were again predominantly on hydraulic conductivity, N nutrition acted specifically by constraining deep root penetration into soil. Specifically, 15,40% shallower root systems supported marginally larger shoot canopies. Independent changes to hydraulics and root penetration have implications for survival of fertilized trees under elevated atmospheric [CO2], particularly during water stress. [source]

The spatial pattern of air seeding thresholds in mature sugar maple trees

ABSTRACT Air seeding threshold (Pa) of xylem vessels from current year growth rings were measured along the vertical axis of mature sugar maple trees (Acer saccharum Marsh.), with sampling points in primary leaf veins, petioles, 1-, 3-, and 7-year-old branches, large branches, the trunk and roots. The air seeding threshold was taken as the pressure required to force nitrogen gas through intervessel pit membranes. Although all measurements were made on wood produced in the same year, Pa varied between different regions of A. saccharum, with distal organs such as leaves and petioles having lower Pa than basal regions. Mean (SE) Pa ranged from 1.0 (± 0.1) MPa in primary leaf veins to 4.8 (± 0.1) MPa in the main trunk. Roots exhibited a Pa of 2.8 (± 0.2) MPa, lower than all other regions of the tree except leaf veins and petioles. Mean xylem vessel diameter increased basipetally, with the widest vessels occurring in the trunk and roots. Within the shoot, wider vessels had greater air seeding thresholds, contrasting with trends previously reported. However, further experimentation revealed that differences in Pa between regions of the stem were driven by the presence of primary xylem conduits, rather than differences in vessel diameter. In 1-year-old branches, Pa was significantly lower in primary xylem vessels than in adjacent secondary xylem vessels. This explained the lower values of Pa measured in petioles and leaf veins, which possessed a greater ratio of primary xylem to secondary xylem than other regions. The difference in Pa between primary and secondary xylem was attributed to the greater area of primary cell wall (pit membrane) exposed in primary xylem conduits with helical or annular thickening. [source]

In vivo magnetic resonance imaging of xylem vessel contents in woody lianas

ABSTRACT Previous reports suggest that in some plant species the refilling of embolized xylem vessels can occur while negative pressure exists in the xylem. The aim of this experiment was to use non-destructive nuclear magnetic resonance imaging (MRI) to study the dynamics of xylem cavitation and embolism repair in-vivo. Serial 1H-MRI was used to monitor the contents of xylem vessels in stems of two dicotyledonous (Actinidia deliciosa and Actinidia chinensis, kiwifruit) and one monocotyledonous (Ripogonum scandens, supplejack) species of woody liana. The configuration of the horizontal wide bore magnet and probe allowed the imaging of woody stems up to 20 mm in diameter. Tests using excised stems confirmed that the image resolution of 78 µm and digital image subtraction could be used to detect the emptying and refilling of individual vessels. Imaging was conducted on both intact plants and excised shoots connected to a water supply. In the case of Ripogonum the excised shoots were long enough to allow the distal end of the shoot, including all leaves, to be exposed to ambient conditions outside the building while the proximal end was inside the MRI magnet. In total, six stems were monitored for 240 h while the shoots were subjected to treatments that included light and dark periods, water stress followed by re-watering, and the covering of all leaves to prevent transpiration. The sudden emptying of water-filled vessels occurred frequently while xylem water potential was low (below ,0.5 MPa for Actinidia, ,1.0 MPa for Ripogonum), and less frequently after xylem water potential approached zero at the end of water-stress treatments. No refilling of empty vessels was observed at any time in any of the species examined. It is concluded that embolism repair under negative pressure does not occur in the species examined here. Embolism repair may be more likely in species with narrower xylem vessels, but further experiments are required with other species before it can be concluded that repair during transpiration is a widespread phenomenon. [source]

Verticillium longisporum and V. dahliae: infection and disease in Brassica napus

L. Zhou
Verticillium wilt of oilseed rape (Brassica napus) is caused primarily by Verticillium longisporum and has become a serious problem in northern Europe. In order to evaluate whether V. longisporum and V. dahliae differ in their interaction with oilseed rape, phenotypical and molecular assessments were made. Oilseed rape plants for fungal assessments were inoculated with V. longisporum and V. dahliae via root-dipping and samples were taken from roots, stems, leaves, flowers, pods and seeds during plant development. The infection by V. longisporum was found to start mainly in lateral roots and root-hairs, followed by colonization of the xylem vessels and extensive spread in stems and leaves, whereas V. dahliae infected the main roots and remained in the region below the cotyledon node of the plants. Re-isolation studies, together with PCR analysis of samples taken from early growth stages through to fully ripe plants, showed that the onset of flowering was a critical phase for V. longisporum to colonize plants. No seeds infected with V. longisporum were found. Mycelial growth from V. dahliae but not V. longisporum was significantly reduced on media containing tissue from a low glucosinolate B. napus genotype compared with growth on media containing tissue from a high glucosinolate cultivar. The results of this study suggest that V. longisporum favours B. napus as host and that the transition from the vegetative to the generative phase is of importance for the spread of the fungus in oilseed rape plants. [source]

Potato diseases caused by soft rot erwinias: an overview of pathogenesis

M. C. M. Pérombelon
Three soft rot erwinias, Erwinia carotovora ssp. carotovora, E. carotovora ssp. atroseptica and E. chrysanthemi are associated with potatoes causing tuber soft rot and blackleg (stem rot). Latent infection of tubers and stems is widespread. As opportunistic pathogens, the bacteria tend to cause disease when potato resistance is impaired. Pathogenesis or disease development in potato tubers and stems is discussed in terms of the interaction between pathogen, host and environment, microbial competition and recent findings on the molecular basis of pathogenicity. Emphasis is placed on the role of free water and anaerobiosis in weakening tuber resistance and in providing nutrient for erwinias to multiply. Blackleg symptoms are expressed when erwinias predominate in rotting mother tubers, invade the stems and multiply in xylem vessels under favourable weather conditions. Soft rot erwinias tend to out-compete other bacteria in tuber rots because of their ability to produce larger quantities of a wider range of cell wall-degrading enzymes. However, despite extensive studies on their induction, regulation and secretion, little is known about the precise role of the different enzymes in pathogenesis. The putative role of quorum-sensing regulation of these enzymes in disease development is evaluated. The role certain pathogenicity-related characters, including motility, adhesion, siderophores, detoxifying systems and the hrp gene complex, common to most bacteria including symbionts and saprophytes, could play in latent and active infections is also discussed. [source]

Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers

Philippe Ranocha
Summary By combining Zinnia elegans in vitro tracheary element genomics with reverse genetics in Arabidopsis, we have identified a new upstream component of secondary wall formation in xylary and interfascicular fibers. Walls are thin 1 (WAT1), an Arabidopsis thaliana homolog of Medicago truncatula NODULIN 21 (MtN21), encodes a plant-specific, predicted integral membrane protein, and is a member of the plant drug/metabolite exporter (P-DME) family (transporter classification number: TC 2.A.7.3). Although WAT1 is ubiquitously expressed throughout the plant, its expression is preferentially associated with vascular tissues, including developing xylem vessels and fibers. WAT1:GFP fusion protein analysis demonstrated that WAT1 is localized to the tonoplast. Analysis of wat1 mutants revealed two cell wall-related phenotypes in stems: a defect in cell elongation, resulting in a dwarfed habit and little to no secondary cell walls in fibers. Secondary walls of vessel elements were unaffected by the mutation. The secondary wall phenotype was supported by comparative transcriptomic and metabolomic analyses of wat1 and wild-type stems, as many transcripts and metabolites involved in secondary wall formation were reduced in abundance. Unexpectedly, these experiments also revealed a modification in tryptophan (Trp) and auxin metabolism that might contribute to the wat1 phenotype. Together, our data demonstrate an essential role for the WAT1 tonoplast protein in the control of secondary cell wall formation in fibers. [source]

ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana

Jae-Heung Ko
Summary Vascular plants evolved to have xylem that provides physical support for their growing body and serves as a conduit for water and nutrient transport. In a previous study, we used comparative-transcriptome analyses to select a group of genes that were upregulated in xylem of Arabidopsis plants undergoing secondary growth. Subsequent analyses identified a plant-specific NAC-domain transcription factor gene (ANAC012) as a candidate for genetic regulation of xylem formation. Promoter-GUS analyses showed that ANAC012 expression was preferentially localized in the (pro)cambium region of inflorescence stem and root. Using yeast transactivation analyses, we confirmed the function of ANAC012 as a transcriptional activator, and identified an activation domain in the C terminus. Ectopic overexpression of ANAC012 in Arabidopsis (35S::ANAC012 plants) dramatically suppressed secondary wall deposition in the xylary fiber and slightly increased cell-wall thickness in the xylem vessels. Cellulose compositions of the cell wall were decreased in the inflorescent stems and roots of 35S::ANAC012 plants, probably resulting from defects in xylary fiber formation. Our data suggest that ANAC012 may act as a negative regulator of secondary wall thickening in xylary fibers. [source]

Leaf vascular dimensions associated with freeze tolerance in bahiagrass (Paspalum notatum)

J.W. Breman
Abstract Foliage damage as a result of individual freeze events is a major limitation to the expansion of bahiagrass (Paspalum notatum) pastures and hay production in Southeastern USA. Greater tolerance to such freeze events would allow production deeper into the fall and winter and allow expansion of this species into colder regions. While it has been reported that small cells are more tolerant to freeze damage, this possibility has not been explored in bahiagrass. Specifically, the hypothesis was examined that xylem vessels with smaller diameter in the midrib of leaves are associated with freeze tolerance among bahiagrass genotypes. Vascular bundle diameter was also measured as a possible index of xylem cell size. A total of eight bahiagrass genotypes were eventually studied representing four freeze-sensitive and four freeze-tolerant lines. There was a clear distinction in xylem cell size between the freeze-sensitive and the freeze-tolerant lines. The freeze-tolerant genotypes had xylem element cells that were significantly smaller than the freeze-sensitive genotypes. Averaged across three leaf positions and all genotypes, the xylem element diameter for the freeze-sensitive lines was 222 ,m and for the freeze-tolerant lines was only 164 ,m. A similar difference was observed in overall vascular bundle diameter with freeze-sensitive lines having a mean of 1168 ,m and the freeze-tolerant lines a mean of 917 ,m. These results indicated that the diameter of the xylem cells in the vascular midrib of bahiagrass may be an important variable influencing the sensitivity among genotypes to freeze damage. [source]

Pistil traits and flower fate in apricot (Prunus armeniaca)

J. Rodrigo
Abstract Although pollination is essential for both seed and fruit set in most angiosperms, even after an adequate pollination, only a fraction of the flowers develop into fruits. The role played by floral traits on reproductive success is well known, but the possible influence of pistil traits has been overlooked, probably because of the difficulty of non-destructive pistil examination. The aim of this work was to examine the influence of several pistil traits on reproductive success in apricot (Prunus armeniaca). For this purpose, in a population of individually labelled flowers, the styles were cut off once the pollen tubes had reached the ovary but prior to the achievement of fertilisation. This approach allowed relating several morphological and physiological pistil parameters in the dissected styles and stigmas to the subsequent set or abscission of the corresponding ovary that remained in the plant. Under the same pollination conditions, the flowers that finally set a fruit show a larger stigmatic area and a higher number of pollen grains, pollen tubes growing along the style and xylem vessels surrounding the transmitting tissue than flowers that abscise before the establishment of fruit set. Furthermore, starch is present in the transmitting tissue of the style in all the flowers that develop into fruits but only in half of the flowers that abscise. The examined pistil traits established prior to fertilisation are related to flower fate, suggesting that the capacity of a flower to become a fruit could be preconditioned at anthesis. [source]