X-ray Energies (x-ray + energy)

Distribution by Scientific Domains


Selected Abstracts


A focusing Laue diffractometer for the investigation of bulk crystals

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2008
Matthias Stockmeier
A focusing Laue diffractometer for high-energy X-rays of up to 300,keV in a laboratory environment is presented. The long attenuation length for X-ray energies above 50,keV allows for the non-destructive investigation of structural issues and bulk properties of single crystals. Furthermore, massive sample environments such as high-temperature furnaces can be used more easily. With an area detector, anisotropic mosaicities or crystallite structure become visible without any rocking movement of the sample. [source]


X-ray spectromicroscopy in soil and environmental sciences

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2010
J. Thieme
X-ray microscopy is capable of imaging particles in the nanometer size range directly with sub-micrometer spatial resolution and can be combined with high spectral resolution for spectromicroscopy studies. Two types of microscopes are common in X-ray microscopy: the transmission X-ray microscope and the scanning transmission X-ray microscope; their set-ups are explained in this paper. While the former takes high-resolution images from an object with exposure times of seconds or faster, the latter is very well suited as an analytical instrument for spectromicroscopy. The morphology of clusters or particles from soil and sediment samples has been visualized using a transmission X-ray microscope. Images are shown from a cryo-tomography experiment based on X-ray microscopy images to obtain information about the three-dimensional structure of clusters of humic substances. The analysis of a stack of images taken with a scanning transmission X-ray microscope to combine morphology and chemistry within a soil sample is shown. X-ray fluorescence is a method ideally applicable to the study of elemental distributions and binding states of elements even on a trace level using X-ray energies above 1,keV. [source]


High-energy X-ray diffraction using the Pixium 4700 flat-panel detector

JOURNAL OF SYNCHROTRON RADIATION, Issue 4 2009
J. E. Daniels
The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 2480 pixels with a pixel size of 154,m 154,m, and thus it covers an effective area of 294,mm 379,mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes. [source]


Quantitative studies of pyrocarbon-coated materials using synchrotron radiation

JOURNAL OF SYNCHROTRON RADIATION, Issue 1 2008
Poonamlata S. Yadav
Phase-contrast imaging provides enhanced image contrast and is important for non-destructive evaluation of structural materials. In this paper, experimental results on in-line phase-contrast imaging using a synchrotron source (ELETTRA, Italy) for objects required in material science applications are discussed. Experiments have been carried out on two types of samples, pyrocarbon-coated zirconia and pyrocarbon-coated alumina microspheres. These have applications in both reactor and industrial fields. The phase-contrast imaging technique is found to be very useful in visualizing and determining the coating thickness of pyrocarbon on zirconia and alumina microspheres. The experiments were carried out at X-ray energies of 16, 18 and 20,keV and different object-to-detector distances. The results describe the contrast values and signal-to-noise ratio for both samples. A comprehensive study was carried out to determine the thickness of the pyrocarbon coating on zirconia and alumina microspheres of diameter 500,m. The advantages of phase-contrast images are discussed in terms of contrast and resolution, and a comparison is made with absorption images. The results show considerable improvement in contrast with phase-contrast imaging as compared with absorption radiography. [source]


Dose dependence of radiation damage for protein crystals studied at various X-ray energies

JOURNAL OF SYNCHROTRON RADIATION, Issue 1 2007
Nobutaka Shimizu
Radiation damage to protein crystals is the most serious problem in obtaining accurate structures from protein crystallography. In order to examine the photon energy dependence of radiation damage, 12 to 15 data sets from each of nine tetragonal lysozyme crystals were collected at nine different X-ray energies (6.5, 7.1, 8.3, 9.9, 12.4, 16.5, 20.0, 24.8 and 33.0,keV) using beamline BL41XU at SPring-8. All results were compared on the basis of absorbed dose, expressed in Gray (Gy). Crystallographic statistics, such as the values of lattice constants, Rmerge and I/,(I), for each data set degraded at all nine energies as the exposure time for each crystal increased. In all data sets, radiation damage was observed after the absorbed dose exceeded 106,Gy. However, from the point of view of crystallographic statistics normalized to the absorbed dose, no clear dependence on photon energy was observed in these results. Structural refinement showed that the average B -factor for the last data set was larger than that for the first data set at all energies tested. However, no energy dependence of radiation damage on B -factor was found. Furthermore, disruption of disulfide bonds due to radiation damage was observed in electron density maps even at the highest photon energy (33,keV) used in this study. Therefore, these results suggest that radiation damage in the energy range investigated could be evaluated based on absorbed dose without energy dependence, and that it is important to minimize the absorbed dose in a crystal sample for obtaining an accurate protein structure. [source]


XMM,Newton observations of GB B1428+4217: confirmation of intrinsic soft X-ray absorption

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2004
M. A. Worsley
ABSTRACT We report the results of XMM,Newton observations of the X-ray bright, radio-loud blazar GB B1428+4217 at a redshift of z= 4.72. We confirm the presence of soft X-ray spectral flattening at energies ,0.7 keV as reported in previous ROSAT and BeppoSAX observations. At hard X-ray energies, the spectrum is consistent with a power law, although we find that the spectral slope varied between both XMM,Newton observations and it is also significantly different from that reported previously. Whilst we cannot rule out intrinsic cold absorption to explain the spectral depression, we favour a dust-free warm absorber. Cold absorption requires a column density ,1.4,1.6 1022 cm,2, whilst a warm absorber could have up to ,1023 cm,2 and an ionization parameter ,102. The spectrum of GB B1428+4217 shows remarkable parallels with that of the z= 4.4 blazar PMN J0525,3343, in which the available evidence is also most consistent with a warm absorber model. [source]


The X-ray spectra of Compton-thick Seyfert 2 galaxies as seen by BeppoSAX

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2000
G. Matt
Results from BeppoSAX observations of Compton-thick Seyfert 2 galaxies are summarized and reviewed, and their general properties derived and discussed. In five out of the seven observed sources, the nucleus is directly visible at high X-ray energies, where the photons penetrate absorbers with column densities in the range 1.1,4.31024 cm,2 (in the other two sources, NGC 1068 and NGC 7674, the nucleus is instead totally obscured at all energies, implying even larger column densities). In most sources there is unambiguous evidence of a reflection component from optically thick, cold matter, while in two (or maybe four) cases there is also evidence of reflection from ionized matter. For the sources with a measured X-ray luminosity, a comparison with the infrared luminosity is made; while in two cases (the Circinus galaxy and NGC 4945) the IR emission appears to be dominated by starburst activity, in the other three sources (NGC 6240, Mrk 3 and TOL 0109-383) it is likely to be dominated by reprocessing of the UV and X-ray photons emitted by an active galactic nucleus. [source]


Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors

JOURNAL OF SYNCHROTRON RADIATION, Issue 3 2007
Bastian Henke
The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40,keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d,4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4,keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K -edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics. [source]


Variable-period undulators as synchrotron radiation sources

JOURNAL OF SYNCHROTRON RADIATION, Issue 3 2003
G. K. Shenoy
A concept for variable-period undulators for the production of synchrotron radiation from both medium- and high-energy storage rings is described. This concept is based on a staggered array of permeable poles placed in a magnetic solenoid that produces a longitudinal field. The concept permits variations in the short magnetic period of the undulator of as much as 100%. The unique capabilities of such undulators will allow them to be tuned by the variation of the period length and of the solenoid field. The device can be operated at either constant flux or constant power, independent of X-ray energy. It is expected that the new concept will have a major impact on the production and applications of X-rays because of the inherent simplicity and flexibility of the design and the absence of radiation damage. Analyses of the magnetic and mechanical design concepts are presented. [source]