X-ray Counterparts (x-ray + counterpart)

Distribution by Scientific Domains


Selected Abstracts


X-ray groups and clusters of galaxies in the Subaru,XMM Deep Field

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
A. Finoguenov
Abstract We present the results of a search for galaxy clusters in the Subaru,XMM Deep Field (SXDF). We reach a depth for a total cluster flux in the 0.5,2 keV band of 2 10,15 erg cm,2 s,1 over one of the widest XMM,Newton contiguous raster surveys, covering an area of 1.3 deg2. Cluster candidates are identified through a wavelet detection of extended X-ray emission. The red-sequence technique allows us to identify 57 cluster candidates. We report on the progress with the cluster spectroscopic follow-up and derive their properties based on the X-ray luminosity and cluster scaling relations. In addition, three sources are identified as X-ray counterparts of radio lobes, and in three further sources, an X-ray counterpart of the radio lobes provides a significant fraction of the total flux of the source. In the area covered by near-infrared data, our identification success rate achieves 86 per cent. We detect a number of radio galaxies within our groups, and for a luminosity-limited sample of radio galaxies we compute halo occupation statistics using a marked cluster mass function. We compare the cluster detection statistics in the SXDF with that in the literature and provide the modelling using the concordance cosmology combined with current knowledge of the X-ray cluster properties. The joint cluster log(N) , log(S) is overpredicted by the model, and an agreement can be achieved through a reduction of the concordance ,8 value by 5 per cent. Having considered the dn/dz and the X-ray luminosity function of clusters, we conclude that to pin down the origin of disagreement a much wider (50 deg2) survey is needed. [source]


Upper limits on X-ray emission from two rotating radio transients

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
D. L. Kaplan
ABSTRACT X-ray emission from the enigmatic rotating radio transients (RRATs) offers a vital clue to understanding these objects and how they relate to the greater neutron star population. An X-ray counterpart to RRAT J1819,1458 is known, and its properties are similar to those of other middle-aged (0.1 Myr) neutron stars. We have searched for X-ray emission with Chandra/Advanced CCD Imaging Spectrometer at the positions of two RRATs with arcsecond (or better) localization, J0847,4316 and J1846,0257. Despite deep searches (especially for RRAT J1846,0257) we did not detect any emission with 0.3,8 keV count-rate limits of 1 and 0.068 counts ks,1, respectively, at 3, confidence. Assuming thermal emission similar to that seen from RRAT J1819,1458 (a blackbody with radius ,20 km), we derive effective temperature limits of 77 and 91 eV for the nominal values of the distances and column densities to both sources, although both of those quantities are highly uncertain and correlated. If we instead fix the temperature of the emission (a blackbody with kT= 0.14 keV), we derive unabsorbed luminosity limits in the 0.3,8 keV range of 1 1032 and 3 1032 erg s,1. These limits are considerably below the luminosity of RRAT J1819,1458(4 1033 erg s,1), suggesting that RRATs J0847,4316 and J1846,0257 have cooled beyond the point of visibility (plausible given the differences in characteristic age). However, as we have not detected X-ray emission, it may also be that the emission from RRATs J0847,4316 and J1846,0257 has a different character from that of RRAT J1819,1458. The two non-detections may prove a counterpoint to RRAT J1819,1458, but more detections are certainly needed before we can begin to derive general X-ray emission properties for the RRAT populations. [source]


X-ray groups and clusters of galaxies in the Subaru,XMM Deep Field

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
A. Finoguenov
Abstract We present the results of a search for galaxy clusters in the Subaru,XMM Deep Field (SXDF). We reach a depth for a total cluster flux in the 0.5,2 keV band of 2 10,15 erg cm,2 s,1 over one of the widest XMM,Newton contiguous raster surveys, covering an area of 1.3 deg2. Cluster candidates are identified through a wavelet detection of extended X-ray emission. The red-sequence technique allows us to identify 57 cluster candidates. We report on the progress with the cluster spectroscopic follow-up and derive their properties based on the X-ray luminosity and cluster scaling relations. In addition, three sources are identified as X-ray counterparts of radio lobes, and in three further sources, an X-ray counterpart of the radio lobes provides a significant fraction of the total flux of the source. In the area covered by near-infrared data, our identification success rate achieves 86 per cent. We detect a number of radio galaxies within our groups, and for a luminosity-limited sample of radio galaxies we compute halo occupation statistics using a marked cluster mass function. We compare the cluster detection statistics in the SXDF with that in the literature and provide the modelling using the concordance cosmology combined with current knowledge of the X-ray cluster properties. The joint cluster log(N) , log(S) is overpredicted by the model, and an agreement can be achieved through a reduction of the concordance ,8 value by 5 per cent. Having considered the dn/dz and the X-ray luminosity function of clusters, we conclude that to pin down the origin of disagreement a much wider (50 deg2) survey is needed. [source]


X-ray emission from optical novae in M 31,

ASTRONOMISCHE NACHRICHTEN, Issue 2 2010
W. Pietsch
Abstract The first supersoft source (SSS) identification with an optical nova in M 31 was based on ROSAT observations. Twenty additional X-ray counterparts (mostly identified as SSS by their hardness ratios) were detected using archival ROSAT, XMM-Newton and Chandra observations obtained before July 2002. Based on these results optical novae seem to constitute the major class of SSS in M 31. An analysis of archival Chandra HRC-I and ACIS-I observations obtained from July 2004 to February 2005 demonstrated that M 31 nova SSS states lasted from months to about 10 years. Several novae showed short X-ray outbursts starting within 50 d after the optical outburst and lasting only two to three months. The fraction of novae detected in soft X-rays within a year after the optical outburst was more than 30%. Ongoing optical nova monitoring programs, optical spectral follow-up and an up-to-date nova catalogue are essential for the X-ray work. Re-analysis of archival nova data to improve positions and find additional nova candidates are urgently needed for secure recurrent nova identifications. Dedicated XMM-Newton/Chandra monitoring programs for X-ray emission from optical novae covering the centre area of M 31 continue to provide interesting new results (e.g. coherent 1105 s pulsations in the SSS counterpart of nova M31N 2007-12b). The SSS light curves of novae allow us , together with optical information , to estimate the mass of the white dwarf, of the ejecta and the burned mass in the outburst. Observations of the central area of M 31 allow us , in contrast to observations in the Galaxy , to monitor many novae simultaneously and proved to be prone to find many interesting SSS and nova types ( 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The X-ray source population of the Andromeda galaxy M 31,

ASTRONOMISCHE NACHRICHTEN, Issue 2 2008
W. Pietsch
Abstract First studies of the X-ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM-Newton observations led to a better knowledge of the X-ray source population. An XMM-Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2,4.5 keV luminosity of 1035 erg s,1. EPIC hardness ratios as well as informations from earlier X-ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X-ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as "hard". These sources may either be XRBs or Crab-like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X-ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM-Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X-ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. ( 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]