X-linked Genes (X-link + gene)

Distribution by Scientific Domains

Selected Abstracts

Indirect evidence from DNA sequence diversity for genetic degeneration of the Y-chromosome in dioecious species of the plant Silene: the SlY4/SlX4 and DD44-X/DD44-Y gene pairs

Abstract The action of natural selection is expected to reduce the effective population size of a nonrecombining chromosome, and this is thought to be the chief factor leading to genetic degeneration of Y-chromosomes, which cease recombining during their evolution from ordinary chromosomes. Low effective population size of Y chromosomes can be tested by studying DNA sequence diversity of Y-linked genes. In the dioecious plant, Silene latifolia, which has sex chromosomes, one comparison (SlX1 vs. SlY1) indeed finds lower Y diversity compared with the homologous X-linked gene, and one Y-linked gene with no X-linked homologue has lower species-wide diversity than a homologous autosomal copy (SlAp3Y vs. SlAp3A). To test whether this is a general pattern for Y-linked genes, we studied two further recently described X and Y homologous gene pairs in samples from several populations of S. latifolia and S. dioica. Diversity is reduced for both Y-linked genes, compared with their X-linked homologues. Our new data are analysed to show that the low Y effective size cannot be explained by different levels of gene flow for the X vs. the Y chromosomes, either between populations or between these closely related species. Thus, all four Y-linked genes that have now been studied in these plants (the two studied here, and two previously studied genes, have low diversity). This supports other evidence for an ongoing degeneration process in these species. [source]

PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology

Michael Fant
Abstract Placenta-specific 1 (PLAC1) is a recently described X-linked gene with expression restricted primarily to cells derived from trophoblast lineage during embryonic development. PLAC1 localizes to a region of the X chromosome thought to be important in placental development although its role in this process has not been defined. This review summarizes our current understanding of its expression, regulation, and function. PLAC1 is expressed throughout human pregnancy by the differentiated trophoblast and localizes to membranous structures in the syncytiotrophoblast, including the microvillous plasma membrane surface. Recent studies have demonstrated that PLAC1 is also expressed by a wide variety of human cancers. Studies of the PLAC1 promoter regions indicate that its expression in both normal placenta and cancer cells is driven by specific interactions involving a combination of transcription factors. Although functional insight into PLAC1 in the normal trophoblast is lacking, preliminary studies suggest that cancer-derived PLAC1 has the potential to promote tumor growth and function. In addition, it also appears to elicit a specific immunologic response that may influence survival in some cancer patients, suggesting that it may provide a therapeutic target for the treatment of some cancers. We also discuss a potential role for PLAC1 as a biomarker predictive of specific pregnancy complications, such as preeclampsia. Copyright 2010 John Wiley & Sons, Ltd. [source]

Turner syndrome and the evolution of human sexual dimorphism

Bernard Crespi
Abstract Turner syndrome is caused by loss of all or part of an X chromosome in females. A series of recent studies has characterized phenotypic differences between Turner females retaining the intact maternally inherited versus paternally inherited X chromosome, which have been interpreted as evidence for effects of X-linked imprinted genes. In this study I demonstrate that the differences between Turner females with a maternal X and a paternal X broadly parallel the differences between males and normal females for a large suite of traits, including lipid profile and visceral fat, response to growth hormone, sensorineural hearing loss, congenital heart and kidney malformations, neuroanatomy (sizes of the cerebellum, hippocampus, caudate nuclei and superior temporal gyrus), and aspects of cognition. This pattern indicates that diverse aspects of human sex differences are mediated in part by X-linked genes, via genomic imprinting of such genes, higher rates of mosaicism in Turner females with an intact X chromosome of paternal origin, karyotypic differences between Turner females with a maternal versus paternal X chromosome, or some combination of these phenomena. Determining the relative contributions of genomic imprinting, karyotype and mosaicism to variation in Turner syndrome phenotypes has important implications for both clinical treatment of individuals with this syndrome, and hypotheses for the evolution and development of human sexual dimorphism. [source]

L1 elements, processed pseudogenes and retrogenes in mammalian genomes

IUBMB LIFE, Issue 12 2006
Wenyong Ding
Abstract Long interspersed nuclear elements 1 (L1 elements or LINE1) are the most active autonomous retrotransposons in mammalian genomes. In addition to L1 elements themselves, other protein-coding mRNAs can also be reverse transcribed and integrated into the genome through the L1-mediated retrotransposition, leading to the formation of processed pseudogenes (PPs) and retrogenes, both of which are characterized by the lack of introns and the presence of a 3' polyA tract and flanking direct repeats. PPs are unable to encode a functional protein and have accumulated frameshift mutations and premature stop codons during evolution. A few of PPs are transcriptionally active. Retrogenes preserve undisrupted coding frames and are capable of encoding a functional protein that is identical or nearly identical to that of the progenitor gene. There is a significant excess of retrogenes that originate from the X chromosome and are retrotransposed into autosomes, and most of these retrogenes are specially expressed in male germ cells, suggesting the inactivation of X-linked genes during male meiosis provides a strong selection pressure on retrogenes originating from the X chromosome. iubmb Life, 58: 677-685, 2006 [source]

Impact of in vitro production techniques on the expression of X-linked genes in bovine (bos taurus) oocytes and pre-attachment embryos

Maria I. Nino-Soto
Abstract Our previous studies showed that expression patterns of X-linked genes in cultured cells are different from those of their tissues of origin. This investigation analyses the transcription pattern of the X-linked genes BIRC4, GAB3, MECP2, RPS4X, SLC25A6, and XIST in bovine in vitro matured oocytes and in vitro fertilized embryos, and their in vivo counterparts. In vitro-derived pools of mature oocytes and pre-attachment embryos were obtained by: (a) TCM-199/serum with bovine oviductal epithelial cells as co-culture, and (b) synthetic oviductal fluid/BSA. Pools of in vivo-derived morulae and blastocysts were provided by a commercial embryo transfer operation. Total RNA was extracted for quantification of gene-specific transcript levels using real-time quantitative PCR. Statistical analysis was performed using a mixed model factorial ANOVA with ,,=,0.05. The effect of the in vitro environmental conditions on X-linked gene transcription was most evident during the fourth cell cycle, at the period of activation of the embryonic genome, and seemed to be less pronounced at later developmental stages, with the exception of BIRC4. The levels of X-linked genes transcripts in in vivo-derived embryos were lower relative to their in vitro counterparts for all genes tested. Finally, the pattern of expression of XIST in bovine oocytes and embryos was similar to that reported in humans. These results highlight the possibility that X-linked gene expression analysis is a useful tool to monitor the impact of reproductive biotechnologies on the developmental potential of embryos and aid in their improvement. Mol. Reprod. Dev. 2006 Wiley-Liss, Inc. [source]

X-chromosome upregulation and inactivation: two sides of the dosage compensation mechanism in mammals

BIOESSAYS, Issue 1 2009
Elena V. Dementyeva
Abstract Mammals have a very complex, tightly controlled, and developmentally regulated process of dosage compensation. One form of the process equalizes expression of the X-linked genes, present as a single copy in males (XY) and as two copies in females (XX), by inactivation of one of the two X-chromosomes in females. The second form of the process leads to balanced expression between the X-linked and autosomal genes by transcriptional upregulation of the active X in males and females. However, not all X-linked genes are absolutely balanced. This review is focused on the recent advances in studying the dosage compensation phenomenon in mammals. [source]