Xenopus Orthologs (xenopus + ortholog)

Distribution by Scientific Domains


Selected Abstracts


Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9

GENES TO CELLS, Issue 7 2007
Stacie Stone
Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development. [source]


Proprotein convertase genes in Xenopus development

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Sylvia Nelsen
Abstract Proprotein convertases (PCs) are a family of serine endoproteases that proteolytically activate many precursor proteins within various secretory pathway compartments. Loss-of-function studies have demonstrated a critical role for these proteases in embryonic patterning and adult homeostasis, yet little is known about how substrate selectivity is achieved. We have identified Xenopus orthologs of three PCs: furin, PC6, and PC4. In addition to previously described isoforms of PC6 and furin, four novel splice isoforms of PC6, which are predicted to encode constitutively secreted proteases, and a putative transmembrane isoform of PC4 were identified. Furin and PC6 are expressed in dynamic, tissue-specific patterns throughout embryogenesis, whereas PC4 transcripts are restricted primarily to germ cells and brain in adult frogs. Developmental Dynamics 233:1038,1044, 2005. 2005 Wiley-Liss, Inc. [source]


Cloning of Xenopus orthologs of Ctf7/Eco1 acetyltransferase and initial characterization of XEco2

FEBS JOURNAL, Issue 24 2008
Masatoshi Takagi
Sister chromatid cohesion is important for the correct alignment and segregation of chromosomes during cell division. Although the cohesin complex has been shown to play a physical role in holding sister chromatids together, its loading onto chromatin is not sufficient for the establishment of sister chromatid cohesion. The activity of the cohesin complex must be turned on by Ctf7/Eco1 acetyltransferase at the replication forks as the result of a specific mechanism. To dissect this mechanism in the well established in vitro system based on the use of Xenopus egg extracts, we cloned two Xenopus orthologs of Ctf7/Eco1 acetyltransferase, XEco1 and XEco2. Both proteins share a domain structure with known members of Ctf7/Eco1 family proteins. Moreover, biochemical analysis showed that XEco2 exhibited acetyltransferase activity. We raised a specific antibody against XEco2 and used it to further characterize XEco2. In tissue culture cells, XEco2 gradually accumulated in nuclei through the S phase. In nuclei formed in egg extract, XEco2 was loaded into the chromatin at a constant level in a manner sensitive to geminin, an inhibitor of the pre-replication complex assembly, but insensitive to aphidicolin, an inhibitor of DNA polymerases. In both systems, no specific localization was observed during mitosis. In XEco2-depleted egg extracts, DNA replication occurred with normal kinetics and efficiency, and the condensation and sister chromatid cohesion of subsequently formed mitotic chromosomes was unaffected. These observations will serve as a platform for elucidating the molecular function of Ctf7/Eco1 acetyltransferase in the establishment of sister chromatid cohesion in future studies, in which XEco1 and XEco2 should be dissected in parallel. [source]