Xenopus Gene (xenopus + gene)

Distribution by Scientific Domains

Selected Abstracts

Cloning a novel developmental regulating gene, Xotx5: Its potential role in anterior formation in Xenopus laevis

Hiroki Kuroda
The vertebrate Otx gene family is related to otd, a gene contributing to head development in Drosophila. In Xenopus, Xotx1, Xotx2, and Xotx4 have already been isolated and analyzed. Here the cloning, developmental expression and functions of the additional Otx Xenopus gene, Xotx5 are reported. This latter gene shows a greater degree of homology to Xotx2 than Xotx1 and Xotx4. Xotx5 was initially expressed in Spemann's organizer and later in the anterior region. Ectopic expression of Xotx5 had similar effects to other Xotx genes in impairing trunk and tail development, and especially similar effects to Xotx2 in causing secondary cement glands. Taken together, these findings suggest that Xotx5 stimulates the formation of the anterior regions and represses the formation of posterior structures similar to Xotx2. [source]

Molecular cloning of the Matrix Gla Protein gene from Xenopus laevis

FEBS JOURNAL, Issue 7 2002
Functional analysis of the promoter identifies a calcium sensitive region required for basal activity
To analyze the regulation of Matrix Gla Protein (MGP) gene expression in Xenopus laevis, we cloned the xMGP gene and its 5, region, determined their molecular organization, and characterized the transcriptional properties of the core promoter. The Xenopus MGP (xMGP) gene is organized into five exons, one more as its mammalian counterparts. The first two exons in the Xenopus gene encode the DNA sequence that corresponds to the first exon in mammals whereas the last three exons show homologous organization in the Xenopus MGP gene and in the mammalian orthologs. We characterized the transcriptional regulation of the xMGP gene in transient transfections using Xenopus A6 cells. In our assay system the identified promoter was shown to be transcriptionally active, resulting in a 12-fold induction of reporter gene expression. Deletional analysis of the 5, end of the xMGP promoter revealed a minimal activating element in the sequence from ,70 to ,36 bp. Synthetic reporter constructs containing three copies of the defined regulatory element delivered 400-fold superactivation, demonstrating its potential for the recruitment of transcriptional activators. In gel mobility shift assays we demonstrate binding of X. laevis nuclear factors to an extended regulatory element from ,180 to ,36, the specificity of the interaction was proven in competition experiments using different fragments of the xMGP promoter. By this approach the major site of factor binding was demonstrated to be included in the minimal activating promoter fragment from ,70 to ,36 bp. In addition, in transient transfection experiments we could show that this element mediates calcium dependent transcription and increasing concentrations of extracellular calcium lead to a significant dose dependent activation of reporter gene expression. [source]

Isolation and characterization of a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing protein

Xu Zhi Ruan
Abstract We have identified a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing protein. Using whole-mount in situ hybridization and RT-PCR, we found abundant xVAP019 maternal transcripts in the animal hemisphere during the cleavage stages and blastula stages. During gastrulation xVAP019 is differentially expressed with higher levels in the animal helf and the highest in marginal zone, then further expressed widely at neuronal stages with strongest signals in the prospective CNS regions and the epidermal ectoderm. Subsequently xVAP019 was expressed predominantly in the head, the eyes, the otic vesicle, branchial arches, spinal cord, notochord, somites, and tailbud. It is absent or very weak in the endoderm. Injecting a morpholino oligo complementary to xVAP019 mRNA or injecting a caped xVAP019 mRNA caused most of embryos to die during gastrulation and neurulation. Overexpression of xVAP019 mRNA also led to eye defect, shorten interocular distance, small body size and abnormal pigment formation in parts of the survival embryos. Similar effects were induced by injecting the xVAP019 human homologous gene FAM92A1. Our results suggest that xVAP019 is essential for the normal ectoderm and axis mesoderm differentiation and embryos survival. This investigation is for the first time in vivo study examining the role of this novel gene and reveals an important role of xVAP019 in embryonic development. Mol. Reprod. Dev. 74: 1505,1513, 2007. 2007 Wiley-Liss, Inc. [source]