Wood-decaying Fungi (wood-decaying + fungus)

Distribution by Scientific Domains


Selected Abstracts


Pathogenic wood-decaying fungi in China

FOREST PATHOLOGY, Issue 2 2007
Y. C. Dai
Summary Wood-decaying fungi on living trees in China were surveyed over the last 12 years. In all, 102 potentially pathogenic Basidiomycetes were found in natural forests, forest plantations, parks and gardens, and among them 20 species were recorded for the first time on living trees in China. The host(s), occurrence, type of damage, type of decay and distribution of each species in China are given. Most of these wood-destroying fungi are polypores in the Aphyllophorales, and the majority were found in temperate and boreal forests. Of all the species detected, 88 species are known to cause white rot, and 14 cause brown rot; 25 species are considered as common, 44 occasional, and 33 rare. [source]


Assembly history dictates ecosystem functioning: evidence from wood decomposer communities

ECOLOGY LETTERS, Issue 6 2010
Tadashi Fukami
Ecology Letters (2010) 13: 675,684 Abstract Community assembly history is increasingly recognized as a fundamental determinant of community structure. However, little is known as to how assembly history may affect ecosystem functioning via its effect on community structure. Using wood-decaying fungi as a model system, we provide experimental evidence that large differences in ecosystem functioning can be caused by small differences in species immigration history during community assembly. Direct manipulation of early immigration history resulted in three-fold differences in fungal species richness and composition and, as a consequence, differences of the same magnitude in the rate of decomposition and carbon release from wood. These effects , which were attributable to the history-dependent outcome of competitive and facilitative interactions , were significant across a range of nitrogen availabilities observed in natural forests. Our results highlight the importance of considering assembly history in explaining ecosystem functioning. [source]


Pathogenic wood-decaying fungi in China

FOREST PATHOLOGY, Issue 2 2007
Y. C. Dai
Summary Wood-decaying fungi on living trees in China were surveyed over the last 12 years. In all, 102 potentially pathogenic Basidiomycetes were found in natural forests, forest plantations, parks and gardens, and among them 20 species were recorded for the first time on living trees in China. The host(s), occurrence, type of damage, type of decay and distribution of each species in China are given. Most of these wood-destroying fungi are polypores in the Aphyllophorales, and the majority were found in temperate and boreal forests. Of all the species detected, 88 species are known to cause white rot, and 14 cause brown rot; 25 species are considered as common, 44 occasional, and 33 rare. [source]


Spatial pattern of downed logs and wood-decaying fungi in an old-growth Picea abies forest

JOURNAL OF VEGETATION SCIENCE, Issue 5 2001
Mattias Edman
See section on Field methods Abstract. Since many wood-living forest species are influenced by the dynamics of coarse woody debris (CWD), information about the spatial pattern of CWD under natural conditions is essential to understand species distributions. In this study we examined the spatial pattern of downed logs and wood-decaying fungi in an old-growth boreal Picea abies forest in northwestern Sweden that is governed by gap-phase dynamics. The spatial pattern of wood-decaying fungi was studied to draw conclusions about species dispersal abilities. A total of 684 logs with a diameter > 10 cm were mapped and analysed with Ripley's K -function. The distribution of all logs taken together displayed a significant aggregated pattern up to 45 m. The different decay stages also deviated from random expectations. Fairly fresh logs and logs in the middle decay stage were clumped up to about 25 and 35 m respectively, and late decayed logs aggregated up to 95 m. Logs with diameters from 10,29 cm were aggregated up to 25 m, whereas logs ,30 cm diameter were randomly distributed. The result suggests that gap-dynamics do have an impact on the spatial pattern of the CWD, creating fine-scale clumping. The random distribution of large logs may result from the slightly regular spacing of large living trees. The spatial patterns of 16 species (n > 20) of wood-decaying fungi were analysed with Ripley's K -function. Three patterns were aggregated, for Gloeophyllum sepiarium, Coniophora olivacea and Vesiculomyces citrinus. These results indicate that the distribution of most species at the stand level is generally not influenced by dispersal limitations. [source]