Home About us Contact | |||
Wortmannin
Kinds of Wortmannin Selected AbstractsAngiotensin II regulates endothelial cell migration through calcium influx via T-type calcium channel in human umbilical vein endothelial cellsACTA PHYSIOLOGICA, Issue 4 2010A. Martini Abstract Aim:, The T-type calcium channel is expressed in vascular endothelial cells, but its role in endothelial cell function is yet to be elucidated. We analysed the endothelial functional role of T-type calcium channel-dependent calcium under angiotensin II (Ang II) stimulation. Methods:, Human umbilical vein endothelial cells were co-incubated with hormone at 10,7 m and either Efonidipine 10,5 m or Verapamil 10,5 m or Mibefradil 10,5 m or Wortmannin 10,6 m. The contribution of Ang II receptors was evaluated using PD123319 10,7 m and ZD 7155 10,7 m. The calcium ion concentration was observed using Fluo-3 acetossimetil ester. The cells were observed after 3, 6, 9 and 12 h. Results:, The microfluorescence method points out that Ang II induces intracellular calcium modulation in time by distinct mechanisms. AT2 receptor blockade is necessary to observe significant increase in [Ca2+]i levels. Pre-treatment with Mibefradil abolishes Ang II -induced cell migration. Conclusions:, Our data show that Ang II, via AT1 receptor, modulates calcium concentration involving T-type calcium channel and L-type calcium channel but only the calcium influx via T-type calcium channels regulates endothelial cell migration which is essential for angiogenesis. [source] Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathwaysJOURNAL OF NEUROCHEMISTRY, Issue 2 2007T. A. Mejía-García Abstract Nitric oxide (NO) is an important signaling molecule in the CNS, regulating neuronal survival, proliferation and differentiation. Here, we explored the mechanism by which NO, produced from the NO donor S -nitroso-acetyl- d - l -penicillamine (SNAP), exerts its neuroprotective effect in purified cultures of chick retinal neurons. Cultures prepared from 8-day-old chick embryo retinas and incubated for 24 h (1 day in culture, C1) were treated or not with SNAP, incubated for a further 72 h (up to 4 days in culture, C4), fixed, and the number of cells estimated, or processed for cell death estimation, by measuring the reduction of the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Experimental cultures were run in parallel but were re-fed with fresh medium in the absence or presence of SNAP at culture day 3 (C3), incubated for a further 24 h up to C4, then fixed or processed for the MTT assay. Previous studies showed that the re-feeding procedure promotes extensive cell death. SNAP prevented this death in a concentration- and time-dependent manner through the activation of soluble guanylate cyclase; this protection was significantly reversed by the enzyme inhibitors 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or LY83583, and mimicked by 8-bromo cyclic guanosine 5,-phosphate (8Br-cGMP) (GMP) or 3-(5,-hydroxymethyl-2,-furyl)-1-benzyl indazole (YC-1), guanylate cyclase activators. The effect was blocked by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The effect of NO was also suppressed by LY294002, Wortmannin, PD98059, KN93 or H89, indicating the involvement, respectively, of phosphatidylinositol-3 kinase, extracellular-regulated kinases, calmodulin-dependent kinases and protein kinase A signaling pathways. NO also induced a significant increase of neurite outgrowth, indicative of neuronal differentiation, and blocked cell death induced by hydrogen peroxide. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore considered an important mediator of apoptosis and necrosis, as well as boc-aspartyl (OMe) fluoromethylketone (BAF), a caspase inhibitor, also blocked cell death induced by re-feeding the cultures. These findings demonstrate that NO inhibits apoptosis of retinal neurons in a cGMP/protein kinase G (PKG)-dependent way, and strengthens the notion that NO plays an important role during CNS development. [source] Regulation of platelet activating factor-induced equine platelet activation by intracellular kinasesJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2009A. C. BROOKS Lipopolysaccharide (LPS) can activate equine platelets directly or indirectly, via leukocyte-derived platelet activating factor (PAF). Thromboxane (Tx) production by LPS-stimulated equine platelets requires p38 MAPK and this kinase has been suggested as a therapeutic target in endotoxaemia. The present study has utilised selective inhibitors to investigate the role of p38 MAPK and two other kinases, phosphatidylinositol-3 kinase (PI3K) and protein kinase C (PKC), in regulating PAF-induced Tx production, aggregation and 5-HT release in equine platelets, and the modification of these responses by LPS. LPS enhanced PAF-induced 5-HT release, an effect that was reduced by the p38 MAPK inhibitor, SB203580 (60 ± 8% reduction; n = 6). SB203580 did not affect responses to PAF alone; whereas inhibition of PKC reduced PAF-induced 5-HT release, Tx production and aggregation (maximal inhibition by the PKC, inhibitor, rottlerin: 69 ± 13%, 63 ± 14% and 97 ± 1%, respectively; n = 6). Wortmannin and LY249002, which inhibit PI3K, also caused significant inhibition of PAF-induced aggregation (maximal inhibition 78 ± 3% and 88 ± 2%, respectively; n = 6). These data suggest that inhibition of platelet p38 MAPK may be of benefit in equine endotoxaemia by counteracting some of the effects of LPS. However, detrimental effects of platelet activation mediated by PAF and not enhanced by LPS are unlikely to be markedly affected. [source] Effects of nominally selective inhibitors of the kinases PI3K, SGK1 and PKB on the insulin-dependent control of epithelial Na+ absorptionBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2010Morag K Mansley BACKGROUND AND PURPOSE Insulin-induced Na+ retention in the distal nephron may contribute to the development of oedema/hypertension in patients with type 2 diabetes. This response to insulin is usually attributed to phosphatidylinositol-3-kinase (PI3K)/serum and glucocorticoid-inducible kinase 1 (SGK1) but a role for protein kinase B (PKB) has been proposed. The present study therefore aimed to clarify the way in which insulin can evoke Na+ retention. EXPERIMENTAL APPROACH We examined the effects of nominally selective inhibitors of PI3K (wortmannin, PI103, GDC-0941), SGK1 (GSK650394A) and PKB (Akti-1/2) on Na+ transport in hormone-deprived and insulin-stimulated cortical collecting duct (mpkCCD) cells, while PI3K, SGK1 and PKB activities were assayed by monitoring the phosphorylation of endogenous proteins. KEY RESULTS Wortmannin substantially inhibited basal Na+ transport whereas PI103 and GDC-0941 had only very small effects. However, these PI3K inhibitors all abolished insulin-induced Na+ absorption and inactivated PI3K, SGK1 and PKB fully. GSK650394A and Akti-1/2 also inhibited insulin-evoked Na+ absorption and while GSK650394A inhibited SGK1 without affecting PKB, Akti-1/2 inactivated both kinases. CONCLUSION AND IMPLICATIONS While studies undertaken using PI103 and GDC-0941 show that hormone-deprived cells can absorb Na+ independently of PI3K, PI3K seems to be essential for insulin induced Na+ transport. Akti-1/2 does not act as a selective inhibitor of PKB and data obtained using this compound must therefore be treated with caution. GSK650394A, on the other hand, selectively inhibits SGK1 and the finding that GSK650394A suppressed insulin-induced Na+ absorption suggests that this response is dependent upon signalling via PI3K/SGK1. [source] Activation of protein kinase B by the A1 -adenosine receptor in DDT1MF-2 cellsBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2000Renée Germack In this study the effect of insulin and A1 -adenosine receptor stimulation on protein kinase B (PKB) activation has been investigated in the hamster vas deferens smooth muscle cell line DDT1MF-2. Increases in PKB phosphorylation were determined by Western blotting using an antibody that detects PKB phosphorylation at Ser473. Insulin, a recognized activator of PKB, stimulated a concentration-dependent increase in PKB phosphorylation in DDT1MF-2 cells (EC50 5±1 pM). The selective A1 -adenosine receptor agonist N6 -cyclopentyladenosine (CPA) stimulated time and concentration-dependent increases in PKB phosphorylation in DDT1MF-2 cells (EC50 1.3±0.5 nM). CPA-mediated increases in PKB phosphorylation were antagonized by the A1 -adenosine receptor selective antagonist 1,3-dipropylcyclopentylxanthine (DPCPX) yielding an apparent KD value of 2.3 nM. Pre-treatment of DDT1MF-2 cells with pertussis toxin (PTX, 100 ng ml,1 for 16 h), to block Gi/Go -dependent pathways, abolished CPA (1 ,M) induced phosphorylation of PKB. In contrast, responses to insulin (100 nM) were resistant to PTX pre-treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin (IC50 10.3±0.6 nM) and LY 294002 (IC50 10.3±1.2 ,M) attenuated the phosphorylation of PKB elicited by CPA (1 ,M) in a concentration-dependent manner. Wortmannin (30 nM) and LY 294002 (30 ,M) also blocked responses to insulin (100 nM). Removal of extracellular Ca2+ and chelation of intracellular Ca2+ with BAPTA had no significant effect on CPA-induced PKB phosphorylation. Similarly, pretreatment (30 min) with inhibitors of protein kinase C (Ro 31-8220; 10 ,M), tyrosine kinase (genistein; 100 ,M), mitogen-activated protein (MAP) kinase kinase (PD 98059; 50 ,M) and p38 MAPK (SB 203580; 20 ,M) had no significant effect on CPA-induced PKB phosphorylation. In conclusion, these data demonstrate that A1 -adenosine receptor stimulation in DDT1MF-2 cells increases PKB phosphorylation through a PTX and PI-3K-sensitive pathway. British Journal of Pharmacology (2000) 130, 867,874; doi:10.1038/sj.bjp.0703396 [source] Mechanisms of 17 ,-oestradiol induced vasodilatation in isolated pressurized rat small arteriesBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2000Linda Shaw The influence of 17 ,-oestradiol on pressurized isolated rat mesenteric and coronary small arteries was investigated. 17 ,-oestradiol caused rapid (t1.0<5 mins) concentration-dependent relaxations of pre-contracted pressurized (50 mmHg) isolated rat mesenteric and coronary arteries. Similar responses were observed in both vessel types. Significant relaxations were only observed at concentrations exceeding 3 ,M. The vasodilatory responses in both types of artery were unaffected by 10 ,ML -nitro arginine (L -NNA) alone or in the presence of 10 ,M indomethacin, inhibitors of nitric oxide and prostaglandin synthesis respectively. They were also unaffected by the pre-contracting agent used i.e. high K+ or U46619 (a thromboxane analogue). Neither the oestrogen receptor antagonist ICI 182,780 (10 ,M) nor the protein synthesis inhibitor cycloheximide (100 ,M) had any effect on the responses of mesenteric arteries to 17 ,-oestradiol. 17 ,-oestradiol had only a minor effect on mesenteric arterial diameter over a concentration range similar to the effective vasodilatory range for 17 ,-oestradiol. Membrane impermeant 17 ,-oestradiol conjugated to bovine serum albumin (,-oestradiol-17hemisuccinate-BSA) (E-H-BSA) resulted in a vasodilatation of pressurized arteries. Wortmannin, an inhibitor of myosin light chain kinase, near maximally relaxed pressurized mesenteric arteries although the time course for the response was significantly slower than that for 17 ,-oestradiol. These results taken together suggest that the acute effects of 17 ,-oestradiol on isolated pressurized arterial tone may be due to effects directly on the vascular smooth muscle via non-genomic mechanisms that involve a stereospecific interaction at the plasma membrane. British Journal of Pharmacology (2000) 129, 555,565; doi:10.1038/sj.bjp.0703084 [source] Plasmacytoid dendritic cell activation by foot-and-mouth disease virus requires immune complexesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2006Laurence Guzylack-Piriou Abstract Natural IFN-producing cells (NIPC), also called plasmacytoid dendritic cells, represent an essential component of the innate immune defense against infection. Despite this, not much is known about the pathways involved in their activation by non-enveloped viruses. The present study demonstrates that the non-enveloped foot-and-mouth disease virus (FMDV) cannot stimulate IFN-, responses in NIPC, unless complexed with FMDV-specific immunoglobulins. Stimulation of NIPC with such immune complexes employs Fc,RII ligation, leading to strong secretion of IFN-,. In contrast to the stimulation of NIPC by many enveloped viruses, FMDV induction of IFN-, production requires live virus. It is necessary for the virus to initiate its replicative cycle. Moreover, it is an abortive replication, as witnessed by the decrease of dsRNA levels and viral titers with time post infection. Sensitivity of the NIPC stimulation to wortmannin and chloroquin, but not leupeptin, indicates an essential role for the pre-lysosomal stage endosomal compartment. In conclusion, the present study demonstrates that immune complexes provide the means for a non-interferogenic virus to induce IFN-, responses by NIPC. This indicates an important link between NIPC and antibodies in immune responses against non-enveloped viruses such as FMDV. [source] Airway inflammation: chemokine-induced neutrophilia and the class,I phosphoinositide 3-kinasesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2005Matthew Abstract Class,I phosphoinositide 3-kinases (PI3K) are known to play a significant role in neutrophil chemotaxis. However, the relative contributions of different PI3K isoforms, and how these impact on lung inflammation, have not been addressed. In vitro studies using wild-type and PI3K, knockout neutrophils demonstrated the major role of the ,,isoform in chemotactic but not chemokinetic events. This was confirmed by a model of direct chemokine instillation into the airways in vivo. Within all studies, a low yet significant degree of neutrophil movement in the absence of PI3K, could be observed. No role for the ,,isoform was demonstrated both in vitro and in vivo using PI3K, kinase-dead knock-in mice. Moreover, further studies using the broad-spectrum PI3K inhibitors wortmannin or LY294002 showed no other class,I PI3K isoforms to be involved in these chemotactic processes. Here, we identify a contributory PI3K-independent mechanism of neutrophil movement, yet demonstrate PI3K, as the pivotal mediator through which the majority of neutrophils migrate into the lung in response to chemokines. These data resolve the complexities of chemokine-induced neutrophilia and PI3K signaling and define the ,,isoform as a promising target for new therapeutics to treat airway inflammatory diseases. [source] Dictyostelium differentiation-inducing factor-1 induces glucose transporter 1 translocation and promotes glucose uptake in mammalian cellsFEBS JOURNAL, Issue 13 2007Waka Omata The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth. [source] Acute activation of Erk1/Erk2 and protein kinase B/akt proceed by independent pathways in multiple cell typesFEBS JOURNAL, Issue 17 2005Doris Chiu We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose,response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival. [source] Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytesGLIA, Issue 9 2007Gerardo Ramos-Mandujano Abstract High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of 3H -glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5,5 U/mL) elicited small 3H -glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of 3H -glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca2+ (Ca2+i) concentration ([Ca2+]i). Preventing Ca2+i rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%,22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca2+ -sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC50 15.8 ,M), DCPIB (IC50 4.2 ,M). These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma. © 2007 Wiley-Liss, Inc. [source] Hepatocyte growth factor promotes cell survival from Fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death,inducing signaling complex suppressionHEPATOLOGY, Issue 4 2000Atsushi Suzuki The Akt/PI-3 kinase pathway is a system essential for cell survival. In the current study, we showed that hepatocyte growth factor (HGF) activates the Akt/PI-3 kinase pathway to suppress Fas-mediated cell death in human hepatocellular carcinoma (HCC; 3 lines; SK-Hep1, HLE, and Chang Liver cell lines), hepatoblastoma (1 line; HepG2), and embryonic hepatocyte (1 line; WRL). Five tested cell lines showed the resistance to Fas-mediated cell death by the pretreatment of HGF. This HGF-induced cell survival was suppressed by wortmannin (Akt/PI-3 kinase pathway inhibitor), suggesting an involvement of Akt. When cells were pretreated with HGF, Fas-mediated cell death was suppressed, followed by Akt phosphorylation at Ser473. Fas-death,inducing signaling complex (DISC) formation, especially FADD and caspase 8 interaction, was suppressed by HGF and the suppression of the Akt/PI-3 kinase pathway by transient expression of PTEN, resulting in acquisition of Fas-DISC formation and Fas-mediated cell death in HGF-treated cells. We suggest that HGF promotes cell survival in hepatocyte-derived cell lines (HCC, hepatoblastoma, and embryonic hepatocyte) from Fas-mediated cell death via Fas-DISC suppression as a result of Akt activation. [source] Characterization of the migration of lung and blood T cells in response CXCL12 in a three-dimensional matrixIMMUNOLOGY, Issue 4 2010Caroline E. Day Summary The ability of T cells to microlocalize within tissues, such as the lung, is crucial for immune surveillance and increased T-cell infiltration is a feature of many inflammatory lung conditions. T-cell migration has mainly been studied in two-dimensional assays. Using three-dimensional collagen gels to mimic the extracellular matrix of lung tissue, we have characterized the migration of T lymphocytes isolated from peripheral blood (PBT) and lung (LT) in response to interleukin-2 (IL-2) and CXCL12. Freshly isolated PBT and LT showed a low degree of migration (blood 4·0 ± 1·3% and lung 4·1 ± 1·7%). Twenty-four hours of culture increased the percentage of migrating PBT and LT (blood 17·5 ± 2·9% and lung 17·7 ± 3·8%). The IL-2 stimulation modestly increased migration of PBT after 6 days (32·3 ± 6·0%), but had no effect on the migration of LT (25·5 ± 3·2%). Twenty-four hours of stimulation with anti-CD3/CD28 caused a small but significant increase in the migration of PBT (to 36·4 ± 5·8%). In a directional three-dimensional assay, CXCL12 failed to induce migration of fresh PBT or LT. Twenty-four hours of culture, which increased CXCR4 expression of PBT 3·6-fold, significantly increased the migration of PBT in response to CXCL12. Migration of PBT to CXCL12 was blocked by pertussis toxin, but not by the phosphoinositide 3-kinase inhibitor wortmannin. Twenty-four-hour cultured LT did not respond to CXCL12. CD3/CD28-stimulation inhibited CXCL12-mediated migration of PBT. These results suggest that the migration pattern of PBT is distinct from that of LT. [source] DEC-205lo Langerinlo neonatal Langerhans' cells preferentially utilize a wortmannin-sensitive, fluid-phase pathway to internalize exogenous antigenIMMUNOLOGY, Issue 4 2003Bernadette M. Bellette Summary Antigen treatment of neonatal epidermis results in antigen-specific immune suppression. Compared with adult counterparts, neonatal Langerhans' cells (LC) demonstrate an impaired ability to transport antigen to the lymph node (LN). As it is possible that neonatal LC have a reduced ability to endocytose antigen, we evaluated the acquisition of endocytic function, the expression of uptake receptors and the internalization of soluble and small particulate antigens in neonatal, juvenile and adult mice. Although LC from 4-day-old mice were weakly positive for the mannose-type receptor, Langerin, they were capable of internalizing fluorescein isothiocyanate (FITC)-dextran, but to a lesser extent than LC from 6-week-old mice. However, when ratio data were calculated to account for variations in fluorescence intensity at 4°, it was demonstrated that neonatal LC continued to internalize antigen over a longer period of time than adult mice and, as the ratios were much higher, that neonatal cells were also relatively more efficient in antigen uptake. When receptors for mannan and mannose were competitively blocked, LC from neonatal mice, but not adult mice, could still efficiently internalize FITC,dextran. Consequently, the uptake of FITC,dextran, in part, occurred via alternative receptors or a receptor-independent fluid-phase pathway. A feasible pathway is macropinocytosis, as LC from 4-day-old mice demonstrated a reduction in FITC,dextran internalization by the macropinocytosis inhibitor, wortmannin. Evidence of a functional macropinocytosis pathway in neonatal LC was further supported by internalization of the soluble tracer Lucifer Yellow (LY). We conclude that neonatal LC preferentially utilize a wortmannin-sensitive, fluid-phase pathway, rather than receptor-mediated endocytosis, to internalize antigen. As neonatal LC are capable of sampling their environment without inducing immunity, this may serve to avoid inappropriate immune responses during the neonatal period. [source] Regulation of human neutrophil-mediated cartilage proteoglycan degradation by phosphatidylinositol-3-kinaseIMMUNOLOGY, Issue 1 2001C. S. T. Hii Summary The ability of neutrophils to degrade cartilage proteoglycan suggests that the neutrophils that accumulate in the joints of rheumatoid arthritis patients are mediators of tissue damage. The regulatory mechanisms which are relevant to the proteoglycan-degrading activity of neutrophils are poorly understood. Since phosphatidylinositol 3-kinase (PI3-K), protein kinase C (PKC), the extracellular signal-regulated protein kinase (ERK)1/ERK2 and cyclic adenosine monophosphate (cAMP) have been reported to regulate neutrophil respiratory burst and/or degranulation, a role for these signalling molecules in regulating proteoglycan degradation was investigated. Preincubation of human neutrophils with GF109203X (an inhibitor of PKC), PD98059 (an inhibitor of MEK, the upstream regulator of ERK1/ERK2) or with forskolin or dibutyryl cAMP, failed to suppress proteoglycan degradation of opsonized bovine cartilage. In contrast, preincubation of neutrophils with wortmannin or LY294002, specific inhibitors of PI3-K, inhibited proteoglycan degradation. Incubation of neutrophils with cartilage resulted in the activation of PI3-K in neutrophils, consistent with a role for PI3-K in proteoglycan degradation. Activation of PI3-K and proteoglycan degradation was enhanced by tumour necrosis factor-,. Degradation caused by neutrophils from the synovial fluid of rheumatoid arthritis patients was also inhibited by wortmannin. These data demonstrate that the proteoglycan degradative activity of neutrophils required PI3-K but not PKC or the ERK1/ERK2/ERK5 cascades and was insensitive to increases in intracellular cAMP concentrations. [source] Inhibitors of the PI3-kinase/Akt pathway induce mitotic catastrophe in non-small cell lung cancer cellsINTERNATIONAL JOURNAL OF CANCER, Issue 5 2006Therese H Hemström Abstract Non-small cell lung cancer cells (NSCLC) are more resistant to anticancer treatment as compared with other types of cancer cells. Recently (Hemström et al., Exp Cell Res 2005;305:200,13) we showed that apoptosis of U1810 NSCLC cells induced by the staurosporine analog PKC 412 correlated with inhibition of Akt and ERK1/2, suggesting the involvement of these kinases in cell survival. Here we investigated the contribution of the PI3-kinase/Akt and MEK/ERK pathways to survival of NSCLC cells. The two signaling pathways were studied by using different combinations of the PI3-kinase inhibitors LY-294002 and wortmannin, the Akt activator Ro 31-8220, the MEK inhibitor PD 98059 and PKC 412. PI3-kinase inhibitors induced apoptosis-like death in U1810 cells. H157 cells in general were relatively resistant to PI3 kinase/Akt inhibitors yet these compounds sensitized cells to the DNA-damaging drug VP-16, while Ro 31-8220 could not. PD 98059 only had a sensitizing effect on H157 cells when combined with PI3-kinase inhibition and VP-16. Morphological data indicated that LY-294002 and PKC 412 induced cell death at anaphase and metaphase, respectively, suggesting death by mitotic catastrophe. Analyzes of cells blocked in G2/M-phase by nocodazol revealed that LY-294002 increased, while PKC 412 decreased histone H3 phosphorylation, suggesting that LY-294002 allowed, while PKC 412 inhibited cells to leave M-phase. Flow cytometric analysis of cell cycle distribution demonstrated that LY-294002 allowed cells to leave G2/M phase, while PKC 412 inhibited cytokinesis, resulting in formation of multinucleated cells. These results indicate that sensitization of NSCLC cells by PI3-kinase inhibition involves interplay between cell cycle regulation, mitotic catastrophe and apoptosis. © 2006 Wiley-Liss, Inc. [source] Mammalian Phosphatidylinositol 4-KinasesIUBMB LIFE, Issue 2 2003Ludwig M. G. Heilmeyer Jr. Abstract Three phosphatidylinositol 4-kinase isoforms, PI4K 230, 92 and 55 have been cloned and sequenced allowing a much wider characterization than the previously employed enzymological typing into type II and III enzymes. PI4K 230 and 92 contain a highly conserved catalytic core, PI4K55 one with a much lower degree of similarity. Candidate kinase motifs, deduced from the protein kinase super family, are absolutely conserved in all isoforms. Kinase activities are described based on their sensitivity and reactivity towards wortmannin, phenylarsine oxide (PAO) and 5,-p-fluorosulfonylbenzoyladenosine (FSBA). Localization of all isoforms in the cell is reported. All enzymes contain nuclear localization and export sequence motifs (NLS and NES) leading to the expectation that they can be transferred to the nucleus. PI4K230 has been found in the nucleolus, PI4K92 in the nucleus, additionally further broadening the function of these enzymes. In the cytoplasm of neuronal cells, PI4K230 is distributed evenly on membranes that are ultra structurally cisterns of the rough endoplasmatic reticulum, outer membranes of mitochondria, multivesicular bodies, and are in close vicinity of synaptic contacts. PI4K92 is functionally characterized as a key enzyme regulating Golgi disintegration/reorganization during mitosis probably via phosphorylation by cyclin-dependent kinases on well-defined sites. PI4K55 is involved in the production of second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3) at the plasma membrane, moreover, in the endocytotic pathway in the cytoplasm. [source] Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKTJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Elia Ranzato Abstract There is a growing interest for the clinical use of platelet derivates in wound dressing. Platelet beneficial effect is attributed to the release of growth factors and other bioactive substances, though mechanisms are mostly unknown. We studied wound-healing processes of human primary fibroblasts, by exposing cells to a platelet lysate (PL) obtained from blood samples. Crystal violet and tetrazolium salt (MTS) assays showed dose,response increase of cell proliferation and metabolism. In scratch wound and transwell assays, a dose of 20% PL induced a significant increase of wound closure rate at 6 and 24 hrs, and had a strong chemotactic effect. BAPTA-AM, SB203580 and PD98059 caused 100% inhibition of PL effects, whereas wortmannin reduced to about one third the effect of PL on wound healing and abolished the chemotactic response. Confocal imaging showed the induction by PL of serial Ca2+ oscillations in fibroblasts. Data indicate that cell Ca2+ plays a fundamental role in wound healing even without PL, p38 and ERK1/2 are essential for PL effects but are also activated by wounding per se, PI3K is essential for PL effects and its downstream effector Akt is activated only in the presence of PL. In conclusion, PL stimulates fibroblast wound healing through the activation of cell proliferation and motility with different patterns of involvement of different signalling pathways. [source] Overexpression of RGPR-p117 enhances regucalcin gene promoter activity in cloned normal rat kidney proximal tubular epithelial cells: Involvement of TTGGC motifJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006Natsumi Sawada Abstract A novel protein RGPR-p117 was discovered as regucalcin gene promoter region-related protein that binds to the TTGGC motif using a yeast one-hybrid system. RGPR-p117 is localized in the nucleus of kidney cells, and overexpression of RGPR-p117 can modulate regucalcin protein and its mRNA expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells. This study was undertaken to determine whether overexpression of RGPR-p117 enhances the regucalcin promoter activity using the ,710/+18 LUC construct (wild-type) or ,710/+18 LUC construct (mutant) with deletion of ,523/,435 including TTGGC motif. NRK52E cells (wild-type) or stable HA-RGPR-p117/phCMV2-transfected cells (transfectant) were cultured in Dulbecco's minimum essential medium (DMEM) containing 5% bovine serum (BS). Wild-type cells or transfectants were transfected with the ,710/+18 LUC construct vector or the ,710/+18 LUC construct with deletion of ,523/,435. Wild-type cells or transfectants with subconfluency were cultured for 48 h in a DMEM medium containing either vehicle, BS (5%), or parathyroid hormone (1,34) (PTH; 10,7 M). Luciferase activity in wild-type cells was significantly increased with culture of BS or PTH. This increase was significantly blocked in the presence of various protein kinase inhibitors (staurosporine and PD 98059). Luciferase activity in transfectants was significantly increased as compared with that of wild-type cells in the absence of BS or PTH. The increase in luciferase activity in transfectants was completely decreased in mutant with deletion of ,523/,435 sequence of regucalcin promoter. This was also seen using the ,710/+18 LUC construct with deletion of ,523/,503 sequence containing TTGGC motif. The increase in luciferase activity in transfectants was not significantly enhanced with culture of BS (5%), PTH (10,7 M), Bay K 8644 (10,6 M), phorbol 12-myristate 13-acetate (PMA; 10,6 M), or N6, 2,-dibutyryl cyclic adenosine 3,, 5,-monophosphate (DcAMP; 10,4 M). The increase in luciferase activity in transfectants was completely inhibited with culture of dibucaine (10,6 M), staurosporine (10,9 M), PD 98059 (10,8 M), wortmannin (10,8 M), genistein (10,6 M), vanadate (10,6 M), or okadaic acid (10,6 M) which are inhibitors of various kinases and protein phosphatases. This study demonstrates that RGPR-p117 can enhance the regucalcin promoter activity which is related to the NF-1 consensus sequences including TTGGC motif, and that its enhancing effect is partly mediated through phosphorylation and dephosphorylation in NRK52E cells. J. Cell. Biochem. 99: 589,597, 2006. © 2006 Wiley-Liss, Inc. [source] Transforming growth factor-,1-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004Kiyoshi Wakahara Abstract The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-,1 (TGF-,1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-,1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-,1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-,1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-,1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-,1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-,1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-,1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pr treated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-,1. In conclusion, TGF-,1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system. © 2004 Wiley-Liss, Inc. [source] Transactivation of Src, PDGF receptor, and Akt is involved in IL-1,-induced ICAM-1 expression in A549 cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007Chih-Chung Lin In previous study, interleukin-1, (IL-1,) has been shown to induce ICAM-1 expression through MAPKs and NF-,B in A549 cells. In addition to these pathways, transactivation of non-receptor tyrosine kinase (Src), PDGF receptors (PDGFRs), and phosphatidylinositol 3-kinase (PI3K)/Akt has been implicated in the expression of inflammatory genes. Here, we further investigated whether these different mechanisms participating in IL-1,-induced ICAM-1 expression in A549 cells. We initially observed that IL-1,-induced ICAM-1 promoter activity was attenuated by the inhibitors of Src (PP1), PDGFR (AG1296), PI3-K (LY294002 and wortmannin), and Akt (SH-5), revealed by reporter gene assay, Western blotting, and RT-PCR analyses. The involvement of Src and PI3-K/Akt in IL-1,-induced ICAM-1 expression was significantly attenuated by transfection of A549 cells with dominant negative plasmids of Src, p85 and Akt, respectively. Src, PDGFR, and PI3K/Akt mediated the effects of IL-1, because pretreatment with PP1, AG1296, and wortmannin also abrogated IL-1,-stimulated Src, PDGFR, and Akt phosphorylation, respectively. Moreover, pretreatment with p300 inhibitor (curcumin) also blocked ICAM-1 expression. We further confirmed that p300 was associated with ICAM-1 promoter which was dynamically linked to histone H4 acetylation stimulated by IL-1,, determined by chromatin immunoprecipitation assay. Association of p300 and histone-H4 to ICAM-1 promoter was inhibited by LY294002. Up-regulation of ICAM-1 enhanced the adhesion of neutrophils onto A549 cell monolayer exposed to IL-1,, which was inhibited by PP1, AG1296, LY294002, wortmannin, and helenalin. These results suggested that Akt phosphorylation mediated through transactivation of Src/PDGFR promotes the transcriptional p300 activity and eventually leads to ICAM-1 expression induced by IL-1,. J. Cell. Physiol. 211: 771,780, 2007. © 2007 Wiley-Liss, Inc. [source] HER2 signaling enhances 5,UTR-mediated translation of c-Myc mRNAJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004Enrico Galmozzi The increased levels of c-Myc protein observed previously in an ovarian carcinoma cell line stably transfected to express HER2 has suggested a role for the HER2 pathway in c-Myc expression. Analysis of HER2-transfected cells stimulated with heregulin ,1 (HRG) revealed increased c-Myc protein levels but not a corresponding increase in c-Myc mRNA expression or any change in c-Myc protein half-life. Transfection of HER2-overexpressing cells with a construct containing the 5, untranslated region (5,UTR) of c-Myc mRNA originated from the P2 promoter and placed upstream of the Renilla luciferase gene, enhanced reporter expression upon stimulation with HRG. The HRG-mediated increase in reporter activity correlated with the HRG-mediated induction observed for c-Myc protein, identifying the P2-derived leader (P2L) of c-Myc mRNA as the cis -element involved in c-Myc translational induction. Both the increase in c-Myc protein levels and P2L-enhanced translational activity were inhibited by the PI3K inhibitor wortmannin. Together, these results demonstrate that HRG stimulation of HER2 overexpressing cells leads to enhanced c-Myc protein synthesis through activation of the PI3K/Akt/mTOR pathway and that the P2L of c-Myc mRNA is the element responsible for induction of c-Myc translation. © 2004 Wiley-Liss, Inc. [source] Na+/Mg2+ exchange is functionally coupled to the insulin receptor,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004Ana Ferreira Regulation of cellular Mg2+ levels by insulin has been shown in various tissues. However, the mechanisms for hormonal regulation of cellular Mg2+ have not been well described. We studied the effect of insulin on Na+/Mg2+ exchange in normal human cells, measuring Na+/Mg2+ exchange activity as net total Mg2+ efflux driven by an inward Na+ gradient in Mg2+ -loaded red blood cells (RBCs). Na+/Mg2+ exchange was increased significantly by the addition of 2.4 nmol/L of insulin to the flux medium (from 0.60,±,0.06 mmol/L cell,×,h to 0.75,±,0.08 mmol/L cell,×,h [P,=,0.0098, n,=,44]). A dose-response curve for the effects of insulin on the exchanger activity gave an estimated EC50 for insulin of 0.95,±,0.31 nmol/L and a Vmax of 0.86,±,0.12 mmol/L cell,×,h (n,=,7). Kinetics of the Na+/Mg2+ exchange were characterized by measuring its activity as a function of Mg2+ and Na+ concentrations. The K0.5 for cellular Mg2+ was not affected by incubation with insulin. However, the K0.5 for extracellular Na+ decreased from 69.9,±,6.3 to 40.3,±,8.4 mol/L (n,=,5, P,=,0.03) in the presence of insulin. We also studied the effect of wortmannin (WT), a PI 3-kinase inhibitor, on activity of the exchanger. WT significantly blocked the insulin-stimulated Na+/Mg2+ activity (n,=,6, P,=,0.048), with an IC50 of 0.5 nmol/L. LY294002, another PI 3-kinase inhibitor, likewise blocked the insulin-stimulated activity of the exchanger. Therefore, insulin regulates cellular Mg2+ metabolism in part via an increase in the affinity for Na+ of the Na+/Mg2+ exchange and PI 3-kinase activation, suggesting another role for the PI 3-kinase pathway in insulin-mediated cellular events. © 2003 Wiley-Liss, Inc. [source] Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shockJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004Joshua D. Seno Mre11, Rad50, and Nbs1form a tight complex which is homogeneously distributed throughout the nuclei of mammalian cells. However, after irradiation, the Mre11/Rad50/Nbs1 (M/R/N) complex rapidly migrates to sites of double strand breaks (DSBs), forming foci which remain until DSB repair is complete. Mre11 and Rad50 play direct roles in DSB repair, while Nbs1 appears to be involved in damage signaling. Hyperthermia sensitizes mammalian cells to ionizing radiation. Radiosensitization by heat shock is believed to be mediated by an inhibition of DSB repair. While the mechanism of inhibition of repair by heat shock remains to be elucidated, recent reports suggest that the M/R/N complex may be a target for inhibition of DSB repair and radiosensitization by heat. We now demonstrate that when human U-1 melanoma cells are heated at 42.5 or 45.5°C, Mre11, Rad50, and Nbs1 are rapidly translocated from the nucleus to the cytoplasm. Interestingly, when cells were exposed to ionizing radiation (12 Gy of X-rays) prior to heat treatment, the extent and kinetics of translocation were increased when nuclear and cytoplasmic fractions of protein were analyzed immediately after treatment. The kinetics of the translocation and subsequent relocalization back into the nucleus when cells were incubated at 37°C from 30 min to 7 h following treatment were different for each protein, which suggests that the proteins redistribute independently. However, a significant fraction of the translocated proteins exist as a triple complex in the cytoplasm. Treatment with leptomycin B (LMB) inhibits the translocation of Mre11, Rad50, and Nbs1 to the cytoplasm, leading us to speculate that the relocalization of the proteins to the cytoplasm occurs via CRM1-mediated nuclear export. In addition, while Nbs1 is rapidly phosphorylated in the nuclei of irradiated cells and is critical for a normal DNA damage response, we have found that Nbs1 is rapidly phosphorylated in the cytoplasm, but not in the nucleus, of heated irradiated cells. The phosphorylation of cytoplasmic Nbs1, which cannot be inhibited by wortmannin, appears to be a unique post-translational modification in heated, irradiated cells, and coupled with our novel observations that Mre11, Rad50, and Nbs1 translocate to the cytoplasm, lend further support for a role of the M/R/N complex in thermal radiosensitization and inhibition of DSB repair. J. Cell. Physiol. 199: 157,170, 2004© 2004 Wiley-Liss, Inc. [source] Sevoflurane- and Desflurane-induced human myocardial post-conditioning through Phosphatidylinositol-3-kinase/Akt signallingACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 7 2009L. ZHU Background: The role of phosphatidylinositol-3-kinase (PI3K) in sevoflurane- and desflurane-induced myocardial post-conditioning remains unknown. Methods: We recorded isometric contraction of isolated human right atrial trabeculae (oxygenated Tyrode's at 34 °C, stimulation frequency 1 Hz). In all groups, a 30-min hypoxic period was followed by a 60-min reoxygenation period. At the onset of reoxygenation, muscles were exposed to 5 min of sevoflurane 1%, 2%, and 3%, and desflurane 3%, 6%, and 9%. In separate groups, sevoflurane 2% and desflurane 6% were administered in the presence of 100 nM wortmannin, a PI3K inhibitor. Recovery of force after the 60-min reoxygenation period was compared between groups (mean ± SD). Result: As compared with the Control group (49 ± 7% of baseline) PostC by sevoflurane 1%, 2%, and 3% (78 ± 4%, 79 ± 5%, and 85 ± 4% of baseline, respectively) and desflurane 3%, 6%, and 9% (74 ± 5%, 84 ± 4%, and 86 ± 11% of baseline, respectively) enhanced the recovery of force. This effect was abolished in the presence of wortmannin (56 ± 5% of baseline for sevoflurane 2%+wortmannin; 56 ± 3% of baseline for desflurane 6%+wortmannin). Wortmannin alone had no effect on the recovery of force (57 ± 7% of baseline). Conclusion: In vitro, sevoflurane and desflurane post-conditioned human myocardium against hypoxia through activation of phosphatidylinositol-3-kinase. [source] Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphateJOURNAL OF NEUROCHEMISTRY, Issue 1 2007Jan Benedikt Abstract Ethanol has opposite effects on two members of the transient receptor potential (TRP) family of ion channels: it inhibits the cold-menthol receptor TRPM8, whereas it potentiates the activity of the heat- and capsaicin-gated vanilloid receptor TRPV1. Both thermosensitive cation channels are critically regulated by the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2). The effects of this phospholipid on TRPM8 and TRPV1 are also functionally opposite: PIP2 is necessary for the activation of TRPM8 but it constitutively inhibits TRPV1. This parallel led us to investigate the possible role of PIP2 in the ethanol-induced modulation of rat TRPM8, heterologously expressed in HEK293T cells. In this study, we characterize the effects of ethanol (0.1,10%) on whole-cell currents produced by menthol and by low temperature (< 17°C). We show that the inclusion of PIP2 in the intracellular solution results in a strong reduction in the ethanol-induced inhibition of menthol-evoked responses. Conversely, intracellular dialysis with anti-PIP2 antibody or with the PIP2 scavenger, poly l -lysine, enhanced the ethanol-induced inhibition of TRPM8. A 20 min pre-incubation with wortmannin caused a modest decrease in inhibition produced by 1% ethanol, indicating that the ethanol-induced inhibition is not mediated by lipid kinases. These findings suggest that ethanol inhibits TRPM8 by weakening the PIP2,TRPM8 channel interaction; a similar mechanism may contribute to the ethanol-mediated modulation of some other PIP2 -sensitive TRP channels. [source] Opposing Actions of Phosphatidylinositol 3-Kinase and Glycogen Synthase Kinase-3, in the Regulation of HSF-1 ActivityJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Gautam N. Bijur Abstract: Elevated temperatures activate the survival promoters Aktand heat shock factor-1 (HSF-1), a transcription factor that induces theexpression of heat shock proteins (HSPs), such as HSP-70. Because neuronalmechanisms controlling these responses are not known, these were investigatedin human neuroblastoma SH-SY5Y cells. Heat shock (45°C) rapidly activatedAkt, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38, butonly Akt was activated in a phosphatidylinositol 3-kinase (PI-3K)-dependentmanner, as the PI-3K inhibitors LY294002 and wortmannin blocked Aktactivation, but not ERK1/2 or p38 activation. Akt activation was not blockedby inhibition of p38 or ERK1/2, indicating the independence of these signalingsystems. Heat shock treatment also caused a rapid increase in HSF-1 DNAbinding activity that was partially dependent on PI-3K activity, as both thePI-3K inhibitors attenuated this response. Because Akt inhibits glycogensynthase kinase-3, (GSK-3,), an enzyme that facilitates cell death,we tested if GSK-3, is a negative regulator of HSF-1 activation.Overexpression of GSK-3, impaired heat shock-induced activation of HSF-1,and also reduced HSP-70 production, which was partially restored by theGSK-3, inhibitor lithium. Thus, heat shock-induced activation of PI-3Kand the inhibitory effect of GSK-3, on HSF-1 activation and HSP-70expression imply that Akt-induced inhibition of GSK-3, contributes to theactivation of HSF-1. [source] Facilitation of Myocardial PI3K/Akt/nNOS Signaling Contributes to Ethanol-Evoked Hypotension in Female RatsALCOHOLISM, Issue 7 2009Mahmoud M. El-Mas Background:, The mechanism by which ethanol reduces cardiac output (CO) and blood pressure (BP) in female rats remains unclear. We tested the hypothesis that enhancement of myocardial phosphatidylinositol 3-kinase (PI3K)/Akt signaling and related neuronal nitric oxide synthase (nNOS) and/or endothelial nitric oxide synthase (eNOS) activity constitutes a cellular mechanism for the hemodynamic effects of ethanol. Methods:, We measured the level of phosphorylated eNOS (p-eNOS) and p-nNOS in the myocardium of ethanol (1 g/kg intragastric, i.g.) treated female rats along with hemodynamic responses [BP, CO, stroke volume, (SV), total peripheral resistance, (TPR)], and myocardial nitrate/nitrite levels (NOx) levels. Further, we investigated the effect of selective pharmacological inhibition of nNOS with N, -propyl- l -arginine (NPLA) or eNOS with N5 -(1-iminoethyl)- l -ornithine (l -NIO) on cellular, hemodynamic, and biochemical effects of ethanol. The effects of PI3K inhibition by wortmannin on the cardiovascular actions of ethanol and myocardial Akt phosphorylation were also investigated. Results:, The hemodynamic effects of ethanol (reductions in BP, CO, and SV) were associated with significant increases in myocardial NOx and myocardial p-nNOS and p-Akt expressions while myocardial p-eNOS remained unchanged. Prior nNOS inhibition by NPLA (2.5 or 12.5 ,g/kg) attenuated hemodynamic effects of ethanol and abrogated associated increases in myocardial NOx and cardiac p-nNOS contents. The hemodynamic effects of ethanol and increases in myocardial p-Akt phosphorylation were reduced by wortmannin (15 ,g/kg). On the other hand, although eNOS inhibition by l -NIO (4 or 20 mg/kg) in a dose-dependent manner attenuated ethanol-evoked hypotension, the concomitant reductions in CO and SV remained unaltered. Also, selective eNOS inhibition uncovered dramatic increases in TPR in response to ethanol, which appeared to have offset the reduction in CO. Neither NPLA nor l -NIO altered plasma ethanol levels. Conclusions:, These findings implicate the myocardial PI3K/Akt/nNOS signaling in the reductions in BP and CO produced by ethanol in female rats. [source] Inhibition of the Activity of Excitatory Amino Acid Transporter 4 Expressed in Xenopus Oocytes After Chronic Exposure to EthanolALCOHOLISM, Issue 7 2008Seung-Yeon Yoo Background:, The extracellular glutamate concentration is tightly controlled by excitatory amino acid transporters (EAATs). EAAT4 is the predominant EAAT in the cerebellar Purkinje cells. Purkinje cells play a critical role in motor coordination and may be an important target for ethanol to cause motor impairments. We designed this study to determine the effects of chronic ethanol exposure on the activity of EAAT4 and evaluate the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) in these effects. Methods:, EAAT4 was expressed in Xenopus oocytes following injection of EAAT4 mRNA. Oocytes were incubated with ethanol-containing solution for 24 to 96 hours. Membrane currents induced by l -aspartate were recorded using 2-electrode voltage clamps. Responses were quantified by integration of the current trace and reported in microCoulombs (,C). Results:, Ethanol dose- and time-dependently reduced EAAT4 activity. EAAT4 activity after a 96-hour exposure was significantly decreased compared to the control values at all concentrations tested (10 to 100 mM). Ethanol (50 mM) significantly decreased the Vmax (2.2 ± 0.2 ,C for control vs. 1.6 ± 0.2 ,C for ethanol, n = 18, p < 0.05) of EAAT4 for l -aspartate. Preincubation of ethanol-treated (50 mM for 96 hours) oocytes with phorbol-12-myrisate-13-acetate (100 nM for 10 minutes) abolished the ethanol-induced decrease in EAAT4 activity. While staurosporine (2 ,M for 1 hour) or chelerythrine (100 ,M for 1 hour) significantly decreased EAAT4 activity, no difference was observed in EAAT4 activity among the staurosporine, ethanol, or ethanol plus staurosporine groups. Similarly, EAAT4 activity did not differ among the chelerythrine, ethanol, or ethanol plus chelerythrine groups. Pretreatment of the oocytes with wortmannin (1 ,M for 1 hour) also significantly decreased EAAT4 activity. However, no difference was observed in the wortmannin, ethanol, or ethanol plus wortmannin groups. Conclusions:, The results of this study suggest that chronic ethanol exposure decreases EAAT4 activity and that PKC and PI3K may be involved in these effects. These effects of ethanol on EAAT4 may cause an increase in peri-Purkinje cellular glutamate concentration, and may be involved in cerebellar dysfunction and motor impairment after chronic ethanol ingestion. [source] Inhibition of nuclear factor ,B and phosphatidylinositol 3-kinase/Akt is essential for massive hepatocyte apoptosis induced by tumor necrosis factor , in miceLIVER INTERNATIONAL, Issue 5 2003Motoaki Imose Abstract: Background/aims: Tumor necrosis factor (TNF)-, itself does not induce liver injury in normal mice or hepatocytes. Rather, this event, especially in vitro, is explained by the fact that the TNF-,/TNF receptor system not only triggers downstream signals leading to apoptosis but also induces an antiapoptotic pathway through the activation of nuclear factor (NF)-,B. The aim of this study was to determine whether inhibition of antiapoptotic pathways influences the susceptibility of mice to TNF-,. Here, we focused on the roles of NF-,B and phosphatidylinositol 3-kinase (PI3K)-regulated serine/threonine kinase Akt. Methods: TNF-, was administered to BALB/c mice after treatment with an adenovirus expressing a mutant form I,B, (Ad5I,B), the PI3K inhibitor wortmannin, or both. Liver injury was assessed biochemically and histologically. The expression of Bcl-2 family members and caspase activity were examined. Results: In the mice livers, treatment with Ad5I,B or the wortmannin suppressed the activation of NF-,B or Akt, respectively. Suppression of either NF-,B or Akt showed a slight increase in transaminase levels and focal liver cell death after TNF-, administration. However, in mice treated with both Ad5I,B and wortmannin, TNF-, administration resulted in massive hepatocyte apoptosis and hemorrhagic liver destruction in mice. The combination of Ad5I,B, wortmannin, and TNF-, markedly increased the activation of caspase-3 and -9, and activated caspase-8 to a lesser degree, suggesting that TNF-,-induced hepatocyte apoptosis is dependent on type II cell death signaling pathway, probably through the mitochondria. Inhibition of the NF-,B and PI3K/Akt pathways had no effect on expression of Bcl-2 families. Conclusion: The inducible activation of NF-,B and constitutive activation of Akt regulate hepatocyte survival against TNF-,, which occurs independent of Bcl-2 families. [source] |