Wind Components (wind + component)

Distribution by Scientific Domains


Selected Abstracts


Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods

HYDROLOGICAL PROCESSES, Issue 13 2006
F. Holwerda
Abstract The deposition of fog to a wind-exposed 3 m tall Puerto Rican cloud forest at 1010 m elevation was studied using the water budget and eddy covariance methods. Fog deposition was calculated from the water budget as throughfall plus stemflow plus interception loss minus rainfall corrected for wind-induced loss and effect of slope. The eddy covariance method was used to calculate the turbulent liquid cloud water flux from instantaneous turbulent deviations of the surface-normal wind component and cloud liquid water content as measured at 4 m above the forest canopy. Fog deposition rates according to the water budget under rain-free conditions (0·11 ± 0·05 mm h,1) and rainy conditions (0·24 ± 0·13 mm h,1) were about three to six times the eddy-covariance-based estimate (0·04 ± 0·002 mm h,1). Under rain-free conditions, water-budget-based fog deposition rates were positively correlated with horizontal fluxes of liquid cloud water (as calculated from wind speed and liquid water content data). Under rainy conditions, the correlation became very poor, presumably because of errors in the corrected rainfall amounts and very high spatial variability in throughfall. It was demonstrated that the turbulent liquid cloud water fluxes as measured at 4 m above the forest could be only ,40% of the fluxes at the canopy level itself due to condensation of moisture in air moving upslope. Other factors, which may have contributed to the discrepancy in results obtained with the two methods, were related to effects of footprint mismatch and methodological problems with rainfall measurements under the prevailing windy conditions. Best estimates of annual fog deposition amounted to ,770 mm year,1 for the summit cloud forest just below the ridge top (according to the water budget method) and ,785 mm year,1 for the cloud forest on the lower windward slope (using the eddy-covariance-based deposition rate corrected for estimated vertical flux divergence). Copyright © 2006 John Wiley & Sons, Ltd. [source]


The spatial pattern of summertime subtropical anticyclones over Asia and Africa: A climatological review

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 2 2010
Azar Zarrin
Abstract The National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) monthly mean reanalysis dataset has been used to analyze spatial variations of summertime subtropical anticyclones over the Asia,Africa region. The geopotential height and zonal wind components of 1000, 500, 200, and 100 hPa in a 30-year period (1971,2000) have been used to determine the spatial and temporal variations of the anticyclone centres, their monthly frequency and latitudinal axis variations during April,October. The results revealed that there is a clear difference in the location of the summer anticyclone centres in lower, middle and upper levels of the troposphere. In the lower levels, the Azores subtropical anticyclone is located at the east of North Atlantic. In the middle levels, the frequencies of anticyclone centre are concentrated over the northwest of Africa, Arabian Peninsula and Iranian Plateau. In the upper troposphere, the geographical location of the anticyclone centres and their frequencies in the summer season exhibit a scattered pattern from south of China up to western Iran at 200 hPa, and a bimodal pattern over the Tibetan and the Iranian Plateaus at 100 hPa. In fact, in the entire study domain, the Iranian Plateau is a preferable location of the middle and upper troposphere anticyclones. The highest observed latitude of the subtropical anticyclone at 100, 200 and 500 hPa levels have been seen over north of Tibetan plateau, a large area from east to west of Asia and Iran during August, July,August and July, respectively. The maximum monthly variation in the latitude of the ridgeline is seen at 500, 200, and 100 hPa from June to July which goes even up to 10 degrees at some longitudes. Copyright © 2009 Royal Meteorological Society [source]


Radio constraints on the volume filling factors of AGN winds

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
A. J. Blustin
ABSTRACT The calculation of mass outflow rates of active galactic nuclei (AGN) winds is of great importance in understanding the role that such winds play in AGN-galaxy feedback processes. The mass outflow rates are, however, difficult to estimate since the volume filling factors of the winds are unknown. In this paper, we use constraints imposed by the observed radio emission to obtain upper limits to the volume filling factors of wind components in certain nearby AGN. We do this by predicting the 1.4 GHz radio flux densities emitted by those components, assuming a uniform wind, and then comparing these with the observed flux densities for each AGN at this frequency. We find that the upper limits to the volume filling factors are in the range of 10,4,0.5. [source]


Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 643 2009
F. Griessbaum
Abstract Measurement of the turbulent fluxes of gases, momentum and heat can be biased by obstacles such as buildings or instrument platforms distorting the flow of air to the flux instruments. Standard methods have long been used to account for non-horizontal mean flows. Here we demonstrate a novel approach to correct for the effects of flow distortion which combines numerical flow modelling with eddy covariance measurements of the fluxes. This approach applies a flow distortion correction to the data prior to the application of the standard planar-fit and double-rotation methods. This new direction-dependent flow correction allows the determination of the correct orthogonal wind vector components and hence the vertical turbulent fluxes. We applied the method to a 10 Hz dataset of 3D wind components, temperature, and the concentrations of carbon dioxide and water vapour, as measured on top of a military tower above the city of Münster in northwest Germany during spring and summer 2007. Significant differences appeared between the fluxes that were calculated with the standard rotation methods alone and those that underwent flow distortion correction prior to the application of the rotation methods. The highest deviations of 27% were obtained for the momentum flux. Pronounced differences of 15% and 8% were found for the diurnal net fluxes of carbon dioxide and water vapour, respectively. The flow distortion correction for the carbon dioxide fluxes yielded the same magnitude as the WPL (Webb,Pearman,Leuning) correction for density fluctuations. Copyright © 2009 Royal Meteorological Society [source]


Limitations of a linear model for the hurricane boundary layer

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 641 2009
Stefanie Vogl
Abstract The linear model for the steady boundary layer of a rapidly rotating axisymmetric vortex is derived from a detailed scale analysis of the full equations of motion. The previously known analytic solution is re-appraised for vortices of hurricane scale and strength. The internal consistency of the linear approximation is investigated for such a vortex by calculating from the solution the magnitude of the nonlinear terms that are neglected in the approximation compared with the terms retained. It is shown that the nonlinear terms are not negligibly small in a large region of the vortex, a feature that is consistent with the scale analysis. We argue that the boundary-layer problem is well-posed only at outer radii where there is subsidence into the layer. At inner radii, where there is ascent, only the radial pressure gradient may be prescribed and not the wind components at the top of the boundary layer, but the linear problem cannot be solved in these circumstances. We examine the radius at which the vertical flow at the top of the boundary layer changes sign for different tangential wind profiles relevant to hurricanes and show that this is several hundred kilometres from the vortex centre. This feature represents a further limitation of the linear model applied to hurricanes. While the present analysis assumes axial symmetry, the same limitations presumably apply to non-axisymmetric extensions to the linear model. Copyright © 2009 Royal Meteorological Society [source]