Winter Storms (winter + storm)

Distribution by Scientific Domains


Selected Abstracts


Heavy metal concentrations during storm events in a rehabilitated industrialized catchment

HYDROLOGICAL PROCESSES, Issue 10 2003
W. H. Blake
Abstract Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant-y-Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in-line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0·150 mg l,1) and Cu (0·038 mg l,1) but on the falling limb for Zn (1·660 mg l,1) and Cd (0·006 mg l,1) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three-dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Predictability of seasonal east coast winter storm surge impacts with application to New York's Long Island

METEOROLOGICAL APPLICATIONS, Issue 2 2008
Arthur T. DeGaetano
Abstract The characteristics of seasons with enhanced east coast winter storm (ECWS) and storm surge activity are identified from among a set of global atmospheric circulation indices and local land and sea surface temperature (SST) anomalies. Without regard for storm strength or surge potential, the most active ECWS seasons occur in association with El Niño events. There is also some indication that such seasons are preferred under the positive phase of the Pacific decadal oscillation (PDO). In terms of storm surge potential, forecasts of strong ECWS activity are more skillful than direct forecasts of the number of extreme surge events. In both cases, SSTs off the southeast US coast and in the Gulf of Mexico differentiate high seasonal activity from relatively inactive seasons. Warmer-than-normal SSTs in both regions during summer provide a measure of storm activity in the subsequent winter. The results provide a means of anticipating seasonal ECWS activity, and to some degree impacts, that is similar to widely used forecasts of tropical storm activity. From a predictive standpoint, forecasts of active strong storm seasons and low surge activity exhibit fairly high false alarm ratios. However, the false alarm rate for forecasts of low storm activity or high surge activity is less than 10%. Copyright © 2008 Royal Meteorological Society [source]


Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA,

HYDROLOGICAL PROCESSES, Issue 20 2009
Norman E. Peters
Abstract A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ,12 times annually at 21 stations, with drainage areas ranging from 3·7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces. Published in 2009 by John Wiley & Sons, Ltd. [source]


Wind speed measurements and forest damage in Canton Zurich (Central Europe) from 1891 to winter 2007

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2010
Tilo Usbeck
Abstract The most severe damage to forests in central Europe occurs during winter storms that are caused by Northern Hemispheric mid-latitude cyclones. These winter storms have caused several catastrophic windthrows during the past four decades. Amounts of forest storm damage are believed to be a function of both the size of the forest and the storm intensity. To test this hypothesis, the Zurich region (city and canton) was chosen because long-term climate observation data is available for the region. The relationships between forest attributes, wind speed and forest damage were explored by comparing data on forests and wind speed from 107 winters with forest damage. Storm damage was defined as the proportion of damaged forests with respect to the growing stock. The variables: daily wind run (91 years), daily maximum hourly average wind speed (107 years) and peak gust wind speed (74 years) were homogenized with respect to high wind speed and related to levels of forest damage. High maximum wind speed at the end of the 19th century and at the beginning of the 20th century was followed by low maximum wind speed in the 1940s, 1960s and 1970s. Since then, maximum values have increased. Gusts (extremes of the maximum wind speed) increased from the beginning of the recordings in 1933 and peaked in the early 1990s. Forest damage due to winter storms is best correlated with peak wind speed. Gusts exceeding 40 m/s and resulting in catastrophic windthrow have increased in recent winters. Copyright © 2009 Royal Meteorological Society [source]


Vegetation and disturbance history of a rare dwarf pitch pine community in western New England, USA

JOURNAL OF BIOGEOGRAPHY, Issue 10-11 2002
Glenn Motzkin
Abstract Aim, This study documents the vegetation history and age-structure of a rare, ridgetop dwarf pine,oak community and compares the dynamics of this unusual vegetation with similar dwarf pine communities found elsewhere in the north-eastern United States (US). Location, The study area is located on the summit of Mt Everett in the Taconic Mountains of south-western Berkshire County, Massachusetts, USA (42°06,N 73°26,W). Methods, Vegetation composition, tree age-structure, physical site characteristics, and evidence of fire and other disturbances were determined for twelve 15 × 15 m plots in dwarf pine,oak vegetation and two plots in oak forests on the summit. Age-structure analyses, tree-ring patterns, and historical records of human and natural disturbance were used to investigate the long-term history and dynamics of the summit vegetation. Results, The summit of Mt Everett has been dominated by dwarf pines (1,3 m tall) and ericaceous shrubs similar to the modern vegetation throughout the historical period; there is no evidence that tall-stature forests occurred on the site at any point in the past few centuries. The summit supports uneven-aged stands; pitch pine (Pinus rigida) recruitment began in the 1830s and occurred in every decade since the 1860s. Average pitch pine age is seventy-eight with a range of 12,170 years. Red oak (Quercus rubra) and red maple (Acer rubrum) increased in importance in the twentieth century, with most stems establishing from 1940 to 1980. Pitch pine radial growth rates averaged <0.5 mm year,1 while red oak and red maple averaged 1.0 and 0.8 mm year,1, respectively. In some areas, hardwoods have overtopped pitch pines, apparently resulting in pitch pine mortality. Whereas most dwarf pitch pine communities occur on sites that burn frequently and have a high degree of cone serotiny, we found no evidence of recent fires or cone serotiny. Small amounts of macroscopic charcoal that we documented may have resulted from fires in the pre-European or early historical periods. Conclusions, Harsh edaphic conditions and chronic low-level disturbances on the summit, including frequent winter storms, have apparently contributed to the establishment, long-term persistence, and slow radial growth of dwarf pitch pines on Mt Everett. The ability of dwarf pines to persist on a site in the absence of frequent fire is highly unusual among North-eastern barrens and has not been well-incorporated into previous conceptual ecological models of these communities. Our results suggest that even among North-eastern barrens, the summit of Mt Everett is characterized by highly unusual vegetation and dynamics. The site has long been recognized as regionally significant and should be afforded the strictest conservation protection. With no evident history of human disturbance or recent fire, there is no apparent need for immediate active management of the site. [source]


The influence of sediment type on the aggregative response of oystercatchers, Haematopus ostralegus, searching for cockles, Cerastoderma edule

OIKOS, Issue 1 2000
Ian Johnstone
Models that describe the dispersion patterns of predators between a series of patches that vary in prey density frequently assume that predators, in the absence of interference, will aggregate in patches with the highest prey density, at any point in time. This assumption has important implications for patterns of prey mortality, and the extent to which prey mortality is density dependent. In natural predator-prey systems, it is likely that environmental factors interact with spatial variation in prey density to influence the aggregative response of predators. We show data consistent with this idea on a population of overwintering oystercatchers foraging on cockles. There was no evidence that birds aggregated in patches with the highest biomass density of cockles. The biomass density of cockles was highest in muddy patches at the start of winter, and birds aggregated in patches that switched from being muddy at the start of winter to being sandy at some point during the winter. We argue that sediment type influences foraging costs experienced by the birds, so birds avoid feeding in muddy patches unless the fine sediment is removed from a patch, as happens during winter storms. When this happens a high biomass density of cockles suddenly becomes available and the birds aggregate in such patches. The rate of biomass loss was greatest in patches used intensively by birds for feeding, suggesting that the birds' aggregative response influences cockle mortality. We discuss the implications of our results for ideal free models. [source]


Issues in targeted observing

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 613 2005
(Invited paper for the Q. J. R. Meteorol.
Abstract This paper summarizes successes and limitations of targeted observing field programmes starting from the Fronts and Atlantic Storm-Track Experiment in 1997 through recent programmes targeting winter storms and tropical cyclones. These field programmes have produced average reductions in short-range forecast errors of about 10 per cent over regional verification areas, and maximum forecast error reductions as large as 50 per cent in certain cases. The majority of targeting cases investigated so far involve sets of dropsondes and other observation data that provide partial coverage of target areas. The primary scientific challenges for targeting include the refinement of objective methods that can identify optimal times and locations for targeted observations, as well as identify the specific types of satellite and in situ measurements that are required for the improvement of numerical weather forecasts. The most advanced targeting procedures, at present, include: the ensemble transform Kalman Filter, Hessian singular vectors, and observation-space targeting using the adjoint of a variational data assimilation procedure. Targeted observing remains an active research topic in numerical weather prediction, with plans for continued refinement of objective targeting procedures, and field tests of new satellite and in situ observing systems. Copyright © 2005 Royal Meteorological Society [source]


Aircraft observations of cloud droplet number concentration: Implications for climate studies

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 602 2004
I. Gultepe
Abstract Droplet number concentration (Nd) is a major parameter affecting cloud physical processes and cloud optical characteristics. In most climate models, Nd is usually assumed to be constant or a function of the droplet and aerosol number concentration (Na). Three types of cloud systems over Canada, namely Arctic clouds, maritime boundary-layer clouds, and winter storms, were studied to obtain values of Nd as a function of temperature (T). The probability density function of Nd was also calculated to show the variability of this parameter. The results show that Nd reaches a maximum at about 10 °C (200 cm,3) and then decreases gradually to a minimum (,1,3 cm,3) at about ,35°C. A comparison of relationships between Nd and Na indicates that estimates of Nd from Na can have an uncertainty of about 30,50 cm,3, resulting in up to a 42% uncertainty in cloud short-wave radiative forcing. This study concludes that the typical fixed values of Nd, which are ,100 cm,3 and ,200 cm,3 for maritime and continental clouds, respectively, and the present relationships of Nd to Na, could result in a large uncertainty in the heat and moisture budgets of the earth's atmosphere. It is suggested that the use of relationships between Nd and T can improve climate simulations. © Crown copyright, 2004. Royal Meteorological Society [source]