Home About us Contact | |||
Benzylic Amines (benzylic + amine)
Selected AbstractsChemInform Abstract: Graphite-Supported Gold Nanoparticles as Efficient Catalyst for Aerobic Oxidation of Benzylic Amines to Imines and N-Substituted 1,2,3,4-Tetrahydroisoquinolines to Amides: Synthetic Applications and Mechanistic Study.CHEMINFORM, Issue 6 2010Man-Ho So Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Thiyl Radical Mediated Racemization of Benzylic Amines.CHEMINFORM, Issue 47 2006Stephanie Escoubet Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Asymmetric Carbon,Carbon Bond Formations in Conjugate Additions of Lithiated N-Boc Allylic and Benzylic Amines to Nitroalkenes: Enantioselective Synthesis of Substituted Piperidines, Pyrrolidines, and Pyrimidinones.CHEMINFORM, Issue 6 2003Timothy A. Johnson Abstract For Abstract see ChemInform Abstract in Full Text. [source] ChemInform Abstract: Synthesis of Optically Active Benzylic Amines; Asymmetric Reduction of Ketoxime Ethers with Chiral Oxazaborolidines.CHEMINFORM, Issue 7 2002Evelyne Fontaine Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Graphite-Supported Gold Nanoparticles as Efficient Catalyst for Aerobic Oxidation of Benzylic Amines to Imines and N -Substituted 1,2,3,4-Tetrahydroisoquinolines to Amides: Synthetic Applications and Mechanistic StudyCHEMISTRY - AN ASIAN JOURNAL, Issue 10 2009Man-Ho So Abstract Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43,100,%) and product yields (66,99,%) (19,examples). Oxidation of N -substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83,93,%) with high selectivity (up to amide/enamide=93:4) (6,examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o -phenylenediamines with benzaldehydes under aerobic conditions (8,examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N -benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9,g (84,% isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10,g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed. [source] Oxidation of Primary Amines to N -Monoalkylhydroxylamines using Sodium Tungstate and Hydrogen Peroxide-Urea ComplexADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2005Akbar Heydari Abstract The sodium tungstate-catalyzed (10,mol,%) oxidation of primary amines with a urea-hydrogen peroxide complex (UHP) gives the corresponding N -monoalkylhydroxylamines, which are important biologically active compounds, in good to excellent yields. The method is applicable for a wide range of primary amines, including chiral benzylic amines, ,-1,2-hydroxylamine and ,-amino esters. [source] Graphite-Supported Gold Nanoparticles as Efficient Catalyst for Aerobic Oxidation of Benzylic Amines to Imines and N -Substituted 1,2,3,4-Tetrahydroisoquinolines to Amides: Synthetic Applications and Mechanistic StudyCHEMISTRY - AN ASIAN JOURNAL, Issue 10 2009Man-Ho So Abstract Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43,100,%) and product yields (66,99,%) (19,examples). Oxidation of N -substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83,93,%) with high selectivity (up to amide/enamide=93:4) (6,examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o -phenylenediamines with benzaldehydes under aerobic conditions (8,examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N -benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9,g (84,% isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10,g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed. [source] |