Benzodiazepine Receptor Ligand (benzodiazepine + receptor_ligand)

Distribution by Scientific Domains


Selected Abstracts


The triakontatetraneuropeptide TTN increases [Ca2+]i in rat astrocytes through activation of peripheral-type benzodiazepine receptors

GLIA, Issue 2 2001
Pierrick Gandolfo
Abstract Astrocytes synthesize a series of regulatory peptides called endozepines, which act as endogenous ligands of benzodiazepine receptors. We have recently shown that one of these endozepines, the triakontatetraneuropeptide TTN, stimulates DNA synthesis in astroglial cells. The purpose of the present study was to determine the mechanism of action of TTN on cultured rat astrocytes. Binding of the peripheral-type benzodiazepine receptor ligand [3H]Ro5-4864 to intact astrocytes was displaced by TTN, whereas its C-terminal fragment (TTN[17,34], the octadecaneuropeptide ODN) did not compete for [3H]Ro5-4864 binding. Microfluorimetric measurement of cytosolic calcium concentrations ([Ca2+]i) with the fluorescent probe indo-1 showed that TTN (10,10 to 10,6 M) provokes a concentration-dependent increase in [Ca2+]i in cultured astrocytes. Simultaneous administration of TTN (10,8 M) and Ro5-4864 (10,5 M) induced an increase in [Ca2+]i similar to that obtained with Ro5-4864 alone. In contrast, the effects of TTN (10,8 M) and ODN (10,8 M) on [Ca2+]i were strictly additive. Chelation of extracellular Ca2+ by EGTA (6 mM) or blockage of Ca2+ channels with Ni2+ (2 mM) abrogated the stimulatory effect of TTN. The calcium influx evoked by TTN (10,7 M) or by Ro5-4864 (10,5 M) was not affected by the N- and T-type calcium channel blockers ,-conotoxin (10,6 M) and mibefradil (10,6 M), but was significantly reduced by the L-type calcium channel blocker nifedipine (10,7 M). Patch-clamp studies showed that, at negative potentials, TTN (10,7 M) induced a sustained depolarization. Reduction of the chloride concentration in the extracellular solution shifted the reversal potential from 0 mV to a positive potential. These data show that TTN, acting through peripheral-type benzodiazepine receptors, provokes chloride efflux, which in turn induces calcium influx via L-type calcium channels in rat astrocytes. GLIA 35:90,100, 2001. © 2001 Wiley-Liss, Inc. [source]


Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005
Sergio Veiga
Abstract The peripheral-type benzodiazepine receptor (PBR) is a critical component of the mitochondrial permeability transition pore, which is involved in the regulation of cell survival. Different forms of brain injury result in induction of the expression of the PBR in the areas of neurodegeneration, mainly in reactive glial cells. The consequences of induction of PBR expression after brain injury are unknown. To test whether PBR may be involved in the regulation of neuronal survival after injury, we have assessed the effect of two PBR ligands, Ro5-4864 and PK11195, on neuronal loss induced by kainic acid in the hippocampus. Systemic administration of kainic acid to male rats resulted in the induction of a reactive phenotype in astrocytes and microglia and in a significant loss of hilar neurons in the dentate gyrus. Administration of Ro5-4864, before the injection of kainic acid, decreased reactive gliosis in the hilus and prevented hilar neuronal loss. In contrast, PK11195 was unable to reduce reactive gliosis and did not protect hilar neurons from kainic acid. These findings suggest that the PBR is involved in control of neuronal survival and gliosis after brain injury and identify this molecule as a potential target for neuroprotective interventions. © 2005 Wiley-Liss, Inc. [source]


Effects of central and systemic injections of peripheral benzodiazepine receptor ligands on the anxiolytic actions of ethanol in rats

ADDICTION BIOLOGY, Issue 2 2001
G. S. Morato
The influence of peripheral benzodiazepine receptor ligands Ro5-4864 (0.05 or 1.0 mg/kg, i.p.) or PK11195 (0.05 or 1.0 mg/kg, i.p.) on the anxiolytic effect of ethanol (1.2 g/kg; 14% p/v; i.p.) was investigated in rats tested on the elevated plus-maze. Other animals were injected through intrahippocampal administrations of the ligands (0.5 or 1.0 nmol/0.5 ,l) before ethanol (1.2g/kg; 14% p/v; i.p.) and submitted to the elevated plus-maze test. The results showed that the systemic administration of either ligands 24 hours before the ethanol treatment resulted in a reduced anxiolytic effect of this drug. Only PK11195 reversed the effect of ethanol after intrahippocampal injection. These data suggest that peripheral benzodiazepine receptors play a role in ethanol anxiolysis. [source]


Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004
D.H. Lee
The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 ,M), whereas it was increased by low concentrations of PBR ligands (<10 ,M). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 ,M) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 ,M) and Ro5-5864 (50 ,M) induced cell cycle arrest in the G2/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs. J. Cell. Physiol. 198: 91,99, 2004. © 2003 Wiley-Liss, Inc. [source]