Wide Linear Range (wide + linear_range)

Distribution by Scientific Domains


Selected Abstracts


A New Amperometric Hydrazine Sensor Based on Prussian Blue/Single-walled Carbon Nanotube Nanocomposites

ELECTROANALYSIS, Issue 16 2010
Cong Wang
Abstract A slow reaction process has been successfully used to synthesize Prussian blue/single-walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10,6,6.0×10,3,M with a response time less than 4,s and a detection limit of 0.5,,M. PB/SWNTs modified electrochemical sensors are promising candidates for cost-effective in the hydrazine assays. [source]


Lower Rim Substituted p-tert -Butyl-Calix[4]arene.

ELECTROANALYSIS, Issue 17-18 2009

Abstract Tetrasubstituted p-tert- butylcalix[4]arene-thioamides (1,5) were applied as ionophores in ion-selective membrane electrodes (ISE) and were tested towards Pb-selectivity. The selectivity coefficients of the electrodes were determined. The tertiary calix[4]thioamides (1, 2) show remarkable selectivity for Pb(II) cations when compared with respectable calix[4]amides. The electrode membranes with those ligands are stable, the Pb-characteristics are close to nernstian within a wide linear range (,log c=6,1). Compounds 3,5, the secondary calix[4]thioamides form less stable electrode membranes. Complex formation constants of the ligands 1, 2, 3 and 5 with Pb(II) and some most interfering ions were determined. [source]


Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Gold Nanoparticles/Carbon Nanotubes Nanohybrid Film

ELECTROANALYSIS, Issue 17 2008
Wei Cao
Abstract A novel nanohybrid material, constructed by gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWNTs), was designed for immobilization and biosensing of myoglobin (Mb). Morphology of the nanohybrid film was characterized by SEM. UV-vis spectroscopy demonstrated that Mb on the composite film could retain its native structure. Direct electrochemistry of Mb immobilized on the GNPs/MWNTs film was investigated. The immobilized Mb showed a couple of quasireversible and well-defined cyclic voltammetry peaks with a formal potential of about ,0.35,V (vs. Ag/AgCl) in pH,6.0 phosphate buffer solution (PBS) solution. Furthermore, the modified electrode also displayed good sensitivity, wide linear range and long-term stability to the detection of hydrogen peroxide. The experiment results demonstrated that the hybrid matrix provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer. [source]


Biosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose Detection

ELECTROANALYSIS, Issue 6 2007
Lihuan Xu
Abstract A novel amperometric glucose biosensor based on layer-by-layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt-DENs layer and an anionic GOx layer. Transmission electron microscopy images and ,-potentials proved the formation of layer-by-layer nanostructures on carboxyl-functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt-DENs toward H2O2 and special three-dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5,,M, a wide linear range of 5,,M,0.65,mM, a short response time (within 5,s), and high sensitivity (30.64,,A mM,1,cm,2) and stability (80% remains after 30 days). [source]


Electrochemical Sensing of Explosives

ELECTROANALYSIS, Issue 4 2007
Joseph Wang
Abstract This article reviews recent advances in electrochemical sensing and detection of explosive substances. Escalating threats of terrorist activities and growing environmental concerns have generated major demands for innovative field-deployable tools for detecting explosives in a fast, sensitive, reliable and simple manner. Field detection of explosive substances requires that a powerful analytical performance be coupled to miniaturized low-cost instrumentation. Electrochemical devices offer attractive opportunities for addressing the growing explosive sensing needs. The advantages of electrochemical systems include high sensitivity and selectivity, speed, a wide linear range, compatibility with modern microfabrication techniques, minimal space and power requirements, and low-cost instrumentation. The inherent electroactivity of nitroaromatic, nitramine and nitroester compounds makes them ideal candidates for electrochemical detection. Recent activity in various laboratories has led to the development of disposable sensor strips, novel electrode materials, submersible remote sensors, and electrochemical detectors for microchip (,Lab-on-Chip') devices for on-site electrochemical detection of explosive substances. The attractive behavior of these electrochemical monitoring systems makes them very promising for addressing major security and environmental problems. [source]


Disposable Screen-Printed Edge Band Ultramicroelectrodes for the Determination of Trace Amounts of Nitrite Ion

ELECTROANALYSIS, Issue 10 2006
Jen-Lin Chang
Abstract The application of linear scan voltammetry for sensitive determination of nitrite by using a disposable screen-printed edge band carbon ultramicroelectrode (designated as SPUME) was reported in this study. The measurement with the SPUME can be performed in solutions of low ionic strength, e.g., natural waters, because the ohmic loses are negligible. The limiting oxidation current of nitrite showed a wide linear range up to 3,mM at the SPUME. A relative standard deviation of 2.46% (n=5) for analyzing 5,,M nitrite indicated a detection limit (S/N=3) of 0.38,,M. Real sample analysis of mineral and ground water samples as well as bratwurst food product showed satisfactory results. Since the SPUME is low cost and easy for mass production, the disposable nature further offers to application in diverse field of electroanalytical chemistry. [source]


Iodide-Selective Electrode Based on Copper Phthalocyanine

ELECTROANALYSIS, Issue 23 2002
Saeed Shahrokhian
Abstract Copper phthalocyanine was used as ion carrier for preparing polymeric membrane selective sensor for detection of iodide. The electrode was prepared by incorporating the ionophore into plasticized poly(vinyl chloride) (PVC) membrane, coated on the surface of graphite electrode. This novel electrode shows high selectivity for iodide with respect to many common inorganic and organic anions. The effects of membrane composition, pH and the influence of lipophilic cationic and anionic additives and also nature of plasticizer on the response characteristics of the electrode were investigated. A calibration plot with near-Nernestian slope for iodide was observed over a wide linear range of five decades of concentration (5×10,6,1×10,1,M). The electrode has a fast response time, and micro-molar detection limit (ca. 1×10,6,M iodide) and could be used over a wide pH range of 3.0,8.0. Application of the electrode to the potentiometric titration of iodide ion with silver nitrate is reported. This sensor is used for determination of the minute amounts of iodide in lake water samples. [source]


Self-Assembled Graphene,Enzyme Hierarchical Nanostructures for Electrochemical Biosensing

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
Qiong Zeng
Abstract The self-assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction demonstrate that the HRP,GSs bionanocomposites feature ordered hierarchical nanostructures with well-dispersed HRP intercalated between the GSs. UV-vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS-functionalized GSs. Furthermore, the HRP,GSs composites are utilized for the fabrication of enzyme electrodes (HRP,GSs electrodes). Electrochemical measurements reveal that the resulting HRP,GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP,GSs bionanocomposites toward H2O2. As graphene can be readily non-covalently functionalized by "designer" aromatic molecules with different electrostatic properties, the proposed self-assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications. [source]


Improvement of SAXS measurements on Kratky slit systems by Göbel mirrors and imaging-plate detectors

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-2 2000
Alexander Bergmann
Laboratory X-ray sources emit a highly divergent beam. The Kratky compact camera is constructed to maximize the intensity in the sample using a slit collimation system. The performance of this camera can be further increased if the primary beam is collimated from a divergent into a parallel beam. A recently developed device for this purpose is the so-called `Göbel mirror'. This mirror is made of parabolically bent multilayers, designed to collimate divergent X-rays from laboratory X-ray sources into a parallel and monochromatic beam of high brilliance. Modification of the block collimation system in combination with a Göbel mirror leads to a different beam geometry, resulting in an intensity increase by a factor of about 10. The gain in intensity implicates the use of imaging-plate detectors, which have a wide linear range in intensity and allow the full use of the increased intensity. Hence the quality of the SAXS data is improved by the higher intensity primary beam, the much lower background due to the exclusive use of Cu K, radiation, and a detection unit which is linear in the measured intensity regime. All these advantages, such as intensity gain, lower background, better quality of the data, are demonstrated with some selected experimental results. [source]


Laser ablation-inductively coupled plasma mass spectrometry in archaeometric research

MASS SPECTROMETRY REVIEWS, Issue 1 2010
Martín Resano
Abstract Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is a solid sampling technique in continuous expansion in all types of research fields in which direct multi-elemental or isotopic analysis is required. In particular, this technique shows unique characteristics that made its use recommended in many archaeometric applications, where valuable solid artifacts are often the target samples, because it offers flexibility to achieve spatially resolved information with high detection power and a wide linear range, in a fast and straightforward way, and with minimal sample damage. The current review provides a systematic survey of publications that reported the use of LA-ICPMS in an archaeological context, highlights its main capabilities and limitations and discusses the most relevant parameters that influence the performance of this technique for this type of application. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:55,78, 2010 [source]


Signal-On Electrochemiluminescence Biosensors Based on CdS,Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2009
Xiao-Fei Wang
Abstract This work describes for the first time signal-on electrochemiluminescence (ECL) enzyme biosensors based on cadmium sulfide nanocrystals (CdS NCs) formed in situ on the surface of multi-walled carbon nanotubes (MWCNTs). The MWCNT,CdS can react with H2O2 to generate strong and stable ECL emission in neutral solution. Compared with pure CdS NCs, the MWCNT,CdS can enhance the ECL intensity by 5.3-fold and move the onset ECL potential more positively for about 400,mV, which reduces H2O2 decomposition at the electrode surface and increases detection sensitivity of H2O2. Furthermore, the ECL intensity is less influenced by the presence of oxygen in solution. Benefiting from these properties, signal-on enzyme-based biosensors are fabricated by cross-linking choline oxidase and/or acetylcholine esterase with glutaraldehyde on MWCNT,CdS modified electrodes for detection of choline and acetylcholine. The resulting ECL biosensors show wide linear ranges from 1.7 to 332,µM and 3.3 to 216,µM with lower detection limit of 0.8 and 1.7,µM for choline and acetylcholine, respectively. The common interferents such as ascorbic acid and uric acid in electrochemical enzyme-based biosensors do not interfere with the ECL detection of choline and acetylcholine. Furthermore, both ECL biosensors possess satisfying reproducibility and acceptable stability. [source]