Whole Life Cycle (whole + life_cycle)

Distribution by Scientific Domains


Selected Abstracts


Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla)

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2008
Katarzyna Bartkowska
Abstract Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10,30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew (Sorex araneus) and pygmy shrew (S. minutus). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5-HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews. [source]


Functional roles of remnant plant populations in communities and ecosystems

GLOBAL ECOLOGY, Issue 6 2000
Ove Eriksson
Abstract A hypothesis is suggested for functional roles of remnant plant populations in communities and ecosystems. A remnant population is capable of persistence during extended time periods, despite a negative population growth rate, due to long-lived life stages and life-cycles, including loops that allow population persistence without completion of the whole life cycle. A list of critera is suggested to help identification of remnant plant populations. Several community and ecosystem features may result from the presence of remnant plant populations. Apart from increasing community and ecosystem resilience just by being present, remnant populations may contribute to resilience through enhancing colonization by other plant species, by providing a persistent habitat for assemblages of animals and microorganisms, and by reducing variation in nutrient cycling. It is suggested that the common ability of plants to develop remnant populations is a contributing factor to ecosystem stability. Remnant populations are important for the capacity of ecosystems to cope with the present-day impact caused by human society, and their occurrence should be recognized in surveys of threatened plant species and communities. [source]


The biology of Agriotes sordidus Illiger (Col., Elateridae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2004
L. Furlan
Abstract:, This paper describes the life cycle, including adult behaviour, oviposition, larval and pupal development rate of Agriotes sordidus Illiger. Each larva passed through up to eight to 13 instars. The larval size range of each instar was defined. Larvae need live vegetable tissues to survive and grow, otherwise most die within 40 days. Resistance to starvation increases with the age of the larvae (last instars can survive up to 1 year without food at 20°C). Each instar passes through three phases: mandible hardening and darkening, feeding, pre-moulting. The intense feeding (damaging plants) phase lasted <25% of the whole development time. They are poliphagous and the rate of larval development does not vary with host-plant type (maize, alfalfa). Provided sufficient soil moisture and food are present, larval development rate strongly depends on soil temperature. The duration of each instar increased with the age of the larvae. No larval growth was observed below 9°C. Under laboratory conditions the average heat sum (above a base of 9°C) required for development from egg to adult was about 3900 DD. Similar results were found in the rearing cages and in the open field. At the latitudes of the regions where this study was carried out (northern Italy, Veneto between 45°34,00,,N and 45°42,00,,N and central-south Italy, Molise, between 41°49,720,,N and 41°56,501,,N) the 6th instar (which normally is the first one passing 10 mm in length) is attained by September of the same oviposition year. Pupae can be found between the end of May and September mostly in the upper soil layer. Their transformation into adults took about 16 days at 25°C. Larvae of different stages overwintered by burrowing deep into the soil. Vertical migrations during the year are described: they depend mostly on soil temperatures from October to early spring. The adults overwintered and laid eggs in the subsequent spring. At lower latitudes or in warm seasons most of the population completed its life cycle (from egg to egg) in 24 months over three calendar years. At more northern latitudes, part (sometimes most) of the population completed the whole life cycle in about 36 months over four calendar years. [source]


Gibberellin Biosynthesis and the Regulation of Plant Development

PLANT BIOLOGY, Issue 3 2006
M. J. Pimenta Lange
Abstract: Gibberellins (GAs) form a large family of plant growth substances with distinct functions during the whole life cycle of higher plants. The rate of GA biosynthesis and catabolism determines how the GA hormone pool occurs in plants in a tissue and developmentally regulated manner. With the availability of genes coding for GA biosynthetic enzymes, our understanding has improved dramatically of how GA plant hormones regulate and integrate a wide range of growth and developmental processes. This review focuses on two plant systems, pumpkin and Arabidopsis, which have added significantly to our understanding of GA biosynthesis and its regulation. In addition, we present models for regulation of GA biosynthesis in transgenic plants, and discuss their suitability for altering plant growth and development. [source]


Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2006
Bai-Chen Wang
Abstract Chloroplast RNA-binding proteins are involved in stabilizing stored chloroplast mRNAs and in recruiting site-specific factors that mediate RNA metabolism. In the present study, we characterized two major chloroplast RNA-binding proteins, cp29A and cp29B, by MALDI-TOF MS, N-terminal sequencing, and ESI-MS/MS following 2D-PAGE separation. Polypeptides derived from cp29A were recovered with free N-terminus or with N-terminal acetylation. In addition to the two isoforms found for cp29A, an isoform derived from cp29B was also observed to have five amino acids cleaved from its N-terminus. Results of quantitative real-time RT-PCR indicate that both genes reached maximal rates of transcription 96,h after commencement of germination and maintained relatively high levels throughout the whole life cycle. Transcription of cp29A and cp29B did not vary significantly under light or dark conditions, although production of the acetylated and N-terminally cleaved protein isoforms exhibited light dependence. Exposure of etiolated Arabidopsis seedlings to light conditions for as short as 9,h restored the modified isoforms to levels similar to those found in green plants. Identification of post-translational modifications in major chloroplast RNA-binding proteins may help elucidate their roles in seedling development and in plant RNA stabilization during the greening process. [source]