Western Pacific (western + pacific)

Distribution by Scientific Domains

Terms modified by Western Pacific

  • western pacific ocean

  • Selected Abstracts

    Carrying capacity and survival strategy for the Pacific bluefin tuna, Thunnus orientalis, in the Western Pacific

    Abstract The carrying capacity for the Pacific bluefin tuna at each life stage is estimated and its survival strategy is examined numerically, using a new method to define the hypothetical capacity, the standard population, and the search volumes that are necessary and are feasible for the tuna. The carrying capacity for the adult is estimated at 1,2 × 106 individuals, which corresponds with 5,10% of the hypothetical capacity and is comparable with the maximum levels of the southern and the Atlantic bluefin tuna populations. It is hypothesized semiquantitatively that the migration at each life stage and the remarkable decrement of growth at 120 days and about 40 cm occur as an evolutionary response to population excess over the carrying capacity. It is also hypothesized semiquantitatively that the early larvae have minimal food available in the Subtropical Water and develop the predatory morphology, high growth rate, and high mobility, however, at the expense of a high mortality as an evolutionary response to the tuna spawning in the Subtropical Water. This method may be an available tool to not only investigate the carrying capacity and survival strategy of a specific fish species, but also predict when and in how much abundance the fish species occurs in a specific area of its habitat. [source]

    Critical review of the vector status of Aedes albopictus

    N. G. Gratz
    Abstract., The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), originally indigenous to South-east Asia, islands of the Western Pacific and Indian Ocean, has spread during recent decades to Africa, the mid-east, Europe and the Americas (north and south) after extending its range eastwards across Pacific islands during the early 20th century. The majority of introductions are apparently due to transportation of dormant eggs in tyres. Among public health authorities in the newly infested countries and those threatened with the introduction, there has been much concern that Ae. albopictus would lead to serious outbreaks of arbovirus diseases (Ae. albopictus is a competent vector for at least 22 arboviruses), notably dengue (all four serotypes) more commonly transmitted by Aedes (Stegomyia) aegypti (L.). Results of many laboratory studies have shown that many arboviruses are readily transmitted by Ae. albopictus to laboratory animals and birds, and have frequently been isolated from wild-caught mosquitoes of this species, particularly in the Americas. As Ae. albopictus continues to spread, displacing Ae. aegypti in some areas, and is anthropophilic throughout its range, it is important to review the literature and attempt to predict whether the medical risks are as great as have been expressed in scientific journals and the popular press. Examination of the extensive literature indicates that Ae. albopictus probably serves as a maintenance vector of dengue in rural areas of dengue-endemic countries of South-east Asia and Pacific islands. Also Ae. albopictus transmits dog heartworm Dirofilaria immitis (Leidy) (Spirurida: Onchocercidae) in South-east Asia, south-eastern U.S.A. and both D. immitis and Dirofilaria repens (Raillet & Henry) in Italy. Despite the frequent isolation of dengue viruses from wild-caught mosquitoes, there is no evidence that Ae. albopictus is an important urban vector of dengue, except in a limited number of countries where Ae. aegypti is absent, i.e. parts of China, the Seychelles, historically in Japan and most recently in Hawaii. Further research is needed on the dynamics of the interaction between Ae. albopictus and other Stegomyia species. Surveillance must also be maintained on the vectorial role of Ae. albopictus in countries endemic for dengue and other arboviruses (e.g. Chikungunya, EEE, Ross River, WNV, LaCrosse and other California group viruses), for which it would be competent and ecologically suited to serve as a bridge vector. [source]

    When North and South don't mix: genetic connectivity of a recently endangered oceanic cycad, Cycas micronesica, in Guam using EST-microsatellites

    MOLECULAR ECOLOGY, Issue 12 2010
    Abstract Subject to environmental changes and recurrent isolation in the last ca. 250 Ma, cycads are often described as relicts of a previously common lineage, with populations characterized by low genetic variation and restricted gene flow. We found that on the island of Guam, the endemic Cycas micronesica has most of the genetic variation of 14 EST-microsatellites distributed within each of 18 genetic populations, from 24 original sampling sites. There were high levels of genetic variation in terms of total number of alleles and private alleles, and moderate levels of inbreeding. Restricted but ongoing gene flow among populations within Guam reveals a genetic mosaic, probably more typical of cycads than previously assumed. Contiguous cycad populations in the north of Guam had higher self-recruitment rates compared to fragmented populations in the south, with no substantial connection between them except for one population. Guam's genetic mosaic may be explained by the influence of forest continuity, seed size, edaphic differences, and human transport of cycads. Also important are the extent of synchrony among flushes of reproductive female seed-bearing sporophylls and restricted pollen movement by an obligate mutualist and generalist insects. An NADH EST-locus under positive selection may reflect pressure from edaphic differences across Guam. This and three other loci are ideal candidates for ecological genomic studies. Given this species' vulnerability due to the recent introduction of the cycad aulacaspis scale, we also identify priority populations for ex situ conservation, and provide a genetic baseline for understanding the effects of invasive species on cycads in the Western Pacific, and islands in general. [source]

    IMA Kobe 2006 Special Issue: Sea-floor Hydrothermal Deposits of Arc,Back-arc Systems in Western Pacific

    RESOURCE GEOLOGY, Issue 3 2008
    Tetsuro Urabe
    No abstract is available for this article. [source]

    What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)?

    Dr Xuyang Ge
    Abstract Despite its category-2 intensity only, Typhoon (tropical cyclone in the Western Pacific) Morakot produced a record-breaking rainfall in Taiwan. A cloud-resolving model is used to simulate this extreme rainfall event and understand the dynamic aspect under this event. Due to the interaction between Morakot and a monsoon system, a peripheral gale force monsoon surge appears to the south of Taiwan. The monsoon surge remains even in a sensitivity experiment in which Taiwan terrain is reduced. However, the rainfall amount in Taiwan is greatly reduced without high topography over Taiwan, suggesting the important role the local topography plays in producing heavy rainfall. The overall numerical results indicate that it is the interaction among the typhoon, monsoon system, and local terrain that led to this extreme event. Copyright © 2010 Royal Meteorological Society [source]

    Public sector refraction and spectacle dispensing in low-resource countries of the Western Pacific

    Jacqueline Ramke
    Abstract Background:, Given that uncorrected refractive error is a frequent cause of vision impairment, and that there is a high unmet need for spectacles, an appraisal of public sector arrangements for the correction of refractive error was conducted in eight Pacific Island countries. Methods:, Mixed methods (questionnaire and semi-structured interviews) were used to collect information from eye care personnel (from Fiji, Papua New Guinea, Solomon Islands, Vanuatu, Cook Islands, Samoa, Tonga and Tuvalu) attending a regional eye health workshop in 2005. Results:, Fiji, Tonga and Vanuatu had Vision 2020 eye care plans that included refraction services, but not spectacle provision. There was wide variation in public sector spectacle dispensing services, but, except in Samoa, ready-made spectacles and a full cost recovery pricing strategy were the mainstay. There were no systems for the registration of personnel, nor guidelines for clinical or systems management. The refraction staff to population ratio varied considerably. Solomon Islands, Tuvalu and Vanuatu had the best coverage by services, either fixed or outreach. Most services had little promotional activity or community engagement. Conclusions:, To be successful, it would seem that public sector refraction services should answer a real and perceived need, fit within prevailing policy and legislation, value, train, retain and equip employees, be well managed, be accessible and affordable, be responsive to consumers, and provide ongoing good quality outcomes. To this end, a checklist to aid the initiation and maintenance of refraction and spectacle systems in low-resource countries has been constructed. [source]

    Revised Pacific M-anomaly geomagnetic polarity timescale

    Masako Tominaga
    SUMMARY The current M-anomaly geomagnetic polarity timescale (GPTS) is mainly based on the Hawaiian magnetic lineations in the Pacific Ocean. M-anomaly GPTS studies to date have relied on a small number of magnetic profiles, a situation that is not ideal because any one profile contains an uncertain amount of geologic ,noise' that perturbs the magnetic field signal. Compiling a polarity sequence from a larger array of magnetic profiles is desirable to provide greater consistency and repeatability. We present a new compilation of the M-anomaly GPTS constructed from polarity models derived from magnetic profiles crossing the three lineation sets (Hawaiian, Japanese and Phoenix) in the western Pacific. Polarity reversal boundary locations were estimated with a combination of inverse and forward modelling of the magnetic profiles. Separate GPTS were established for each of the three Pacific lineation sets, to allow examination of variability among the different lineation sets, and these were also combined to give a composite timescale. Owing to a paucity of reliable direct dates of the M-anomalies on ocean crust, the composite model was time calibrated with only two ages; one at each end of the sequence. These two dates are 125.0 Ma for the base of M0r and 155.7 Ma for the base of M26r. Relative polarity block widths from the three lineation sets are similar, indicating a consistent Pacific-wide spreading regime. The new GPTS model shows slightly different spacings of polarity blocks, as compared with previous GPTS, with less variation in block width. It appears that the greater polarity chron irregularity in older models is mostly an artifact of modelling a small number of magnetic profiles. The greater averaging of polarity chron boundaries in our model gives a GPTS that is statistically more robust than prior GPTS models and a superior foundation for Late Jurassic,Early Cretaceous geomagnetic and chronologic studies. [source]

    To the Islands , Photographs of Tropical Colonies in The Queenslander

    Hannah Perkins
    Australian readers knew a great deal about the Pacific Islands in the early 20th century. This understanding came from missionary fund-raising campaigns, visiting lantern-slide lecturers, postcards and illustrated books and encyclopaedia but most of all, after the mid-1890s, from heavily illustrated weekend newspapers. These were published in all major cities and offered a regular visual window on ,the islands', of which three were Australian colonies shortly after World War I. This paper argues that Australians were well-informed about the potential for settlement, and commercial and economic opportunities. It notes that illustrated newspapers were dominated by ethnographic images of the material culture and lifestyles of island peoples, but that images of wharves, plantations, port towns and colonial infrastructure were provided for those readers who thought the western Pacific should become an Australian or at least a British sphere of interest. Ultimately The Queenslander's editorial motivation was to alert Australian readers to the economic potential of plantations, trade, mining, travel and settling in the nearby tropics. [source]

    Response of the summer atmospheric circulation over East Asia to SST variability in the tropical Pacific

    Rena Nagata
    Abstract General circulation over East Asia and its linkages with sea surface temperature (SST) variability over the tropical Pacific is investigated for the 1958,2000 period. The western edge of the North Pacific subtropical high (NPSH) index (SHI) is defined from pentad 31 (May 31 to June 4) to pentad 49 (August 29 to September 2). A southwestward extension of the SHI has been observed since 1980. The changes in the NPSH are associated with SST warming in the tropical eastern Pacific and Indian Ocean. On the basis of the SHI, years with western, eastern, southern and northern displacement of the NPSH are defined as WD, ED, SD and ND years. WD and SD years occur after 1980. Climatologically, the subsidence is located around 30°N in the western Pacific. This subsidence area corresponds to the NPSH region. Before pentad 40 in WD and SD years, associated with warm SST anomalies, circulation anomalies show an ascending motion over the tropical eastern Pacific and Indian Ocean. This ascending motion induces the anomalous subsidence over the tropical western Pacific and causes the southwestward extension of the NPSH. After pentad 40 (July 15,19), the seasonal evolution of WD years is different from the SD years. After pentad 40 in WD years, associated with large warm SST anomalies over the tropical eastern Pacific and Indian Ocean, the strong anomalous ascending motion strengthens the anomalous subsidence in the western tropical Pacific and leads to the lack of the eastward contraction of the NPSH. In SD years, warm SST anomalies over the tropical eastern Pacific and Indian Ocean weakened after pentad 40. Correspondently, the weakened anomalous ascending motion over these regions provides the weak anomalous subsidence over the tropical western Pacific. The weakened anomalous subsidence leads to the eastward contraction of the NPSH after pentad 40 similar to the climatological evolution. Copyright © 2009 Royal Meteorological Society [source]

    An analysis of late twentieth century trends in Australian rainfall

    Andréa S. Taschetto
    Abstract Trends in Australian precipitation from 1970 to 2006 are examined using a daily rainfall dataset. Results suggest a linkage between changes in the monsoon trough and rainfall trends over northwestern Australia. The late twentieth century drought observed along the Queensland coast is a response to changes in the atmospheric circulation that generates anomalous subsidence at high and middle levels of the atmosphere, thus inhibiting convection over the region. In addition, an anomalous anticyclonic circulation at low levels over Queensland tends to weaken the easterlies in the tropical western Pacific, thus diminishing the transport of moist air onto the coast. Trends in the frequency and magnitude of different rainfall events are also examined. This reveals that changes in total rainfall are dominated by trends in very heavy rainfall events across Australia. For example, some parts of western Australia reveal an increase in heavy rainfall events that are not accompanied by a rise in modest rainfall events, resulting in changes in the shape of the distribution towards a more skewed precipitation distribution. On the other hand, the frequency of extreme rainfall events along the Queensland coast has declined during summer and autumn consistently with the total rainfall decrease, indicating changes in the position of the precipitation distribution rather than its shape. Copyright © 2008 Royal Meteorological Society [source]

    Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset

    Yuan Yuan
    Abstract This article explores the impacts of the Indian Ocean basin-scale sea surface temperature anomaly (SSTA) on the South China Sea (SCS) summer monsoon onset. Basin-wide warming in the tropical Indian Ocean (TIO) is found to occur in the spring following an El Niño event, and the opposite occurs for a La Niña event. Such changes of the Indian Ocean SSTA apparently prolong the El Niño-Southern Oscillation (ENSO) effects on the subsequent Asian summer monsoon, mainly through modifying the strength of the Philippine Sea anti-cyclone. Warming in the TIO induces an anomalous reversed Walker circulation over the tropical Indo,Pacific Ocean, which leads to descending motion, and hence suppressed convection in the western Pacific. The intensified Philippine Sea anti-cyclone in May and June advances more westward and prevents the extension of the Indian Ocean westerly flow into the SCS region, thereby causing a late SCS monsoon onset. The case is opposite for the TIO cooling such that the Philippine Sea anti-cyclone weakens and retreats eastward, thus favouring an early onset of the SCS monsoon. Copyright © 2008 Royal Meteorological Society [source]

    Intraseasonal oscillations and the South China Sea summer monsoon onset

    Wen Zhou
    Abstract This paper investigates the role of intraseasonal oscillations (ISOs) in the onset of the South China Sea summer monsoon (SCSSM). Two major components of ISO (10,20-day and 30,60-day modes) are identified. The coupling of these two intraseasonal modes during the pre-monsoon period of the SCSSM are investigated by examining the filtered outgoing longwave radiation (OLR), low-level circulation, apparent heat source and apparent moisture sink from October of a previous calendar year to September of a calendar year. The zonal and meridional propagations of the 10,20-day and 30,60-day modes are found to be different, which reflects their different roles in the establishment and development of the SCSSM. The northwestward propagation of the 10,20-day mode is associated with the weakening of the subtropical high over the western Pacific, while the northeastward propagation of the 30,60-day mode originates from convection over the equatorial Indian Ocean. A hypothesis is then proposed to explain the observed variabilities in the SCSSM onset. When the equatorial Indian Ocean exhibits a 30,60-day mode oscillation, an initially weak convection develops into a large convection band (or monsoon trough). Meanwhile, a convective disturbance of the 10,20-day mode is induced when this monsoon trough extends to the western Pacific. These two processes then collaborate to cause a weakening of the subtropical anticyclone over the South China Sea. Because the monsoon trough associated with the 30,60-day mode subsequently propagates northward into the Bay of Bengal (BOB), the induced vortex together with the 10,20-day westward-migrating convection from the equatorial western Pacific will substantially increase the effect of horizontal advection of moisture and heat, thus destabilizing the atmosphere and weakening the subtropical ridge there. Westerlies can then penetrate and prevail over the SCS region, and the SCSSM onset occurs. Copyright © 2005 Royal Meteorological Society. [source]

    The Pacific,South American modes and their downstream effects

    Kingtse C. Mo
    Abstract There are two pervasive modes of atmospheric variability in the Southern Hemisphere (SH) that influence circulation and rainfall anomalies over South America. They appear as leading empirical orthogonal functions (EOFs) of 500-hPa height or 200-hPa streamfunction anomalies and are found from intraseasonal to decadal time scales. Both patterns exhibit wave 3 hemispheric patterns in mid to high latitudes, and a well-defined wave train with large amplitude in the Pacific,South American (PSA) sector. Therefore, they are referred to as the PSA modes (PSA1 and PSA2). PSA1 is related to sea surface temperature anomalies (SSTAs) over the central and eastern Pacific at decadal scales, and it is the response to El Niño,Southern Oscillation (ENSO) in the interannual band. The associated rainfall summer pattern shows rainfall deficits over northeastern Brazil and enhanced rainfall over southeastern South America similar to rainfall anomalies during ENSO. PSA2 is associated with the quasi-biennial component of ENSO, with a period of 22,28 months and the strongest connections occur during the austral spring. The associated rainfall pattern shows a dipole pattern with anomalies out of phase between the South Atlantic Convergence Zone (SACZ) extending from central South America into the Atlantic and the subtropical plains centred at 35°S. These two modes are also apparent in tropical intraseasonal oscillations for both summer and winter. Eastward propagation of enhanced convection from the Indian Ocean through the western Pacific to the central Pacific is accompanied by a wave train that appears to originate in the convective regions. The positive PSA1 pattern is associated with enhanced convection over the Pacific from 150°E to the date line. The convection pattern associated with PSA2 is in quadrature with that of PSA1. Both PSA modes are influenced by the Madden Julian Oscillation and influence rainfall over South America. Copyright © 2001 Royal Meteorological Society [source]

    Effects of habitat history and extinction selectivity on species-richness patterns of an island land snail fauna

    Satoshi Chiba
    Abstract Aim, Local-scale diversity patterns are not necessarily regulated by contemporary processes, but may be the result of historical events such as habitat changes and selective extinctions that occurred in the past. We test this hypothesis by examining species-richness patterns of the land snail fauna on an oceanic island where forest was once destroyed but subsequently recovered. Location, Hahajima Island of the Ogasawara Islands in the western Pacific. Methods, Species richness of land snails was examined in 217 0.25 × 0.25 km squares during 1990,91 and 2005,07. Associations of species richness with elevation, current habitat quality (proportion of habitat composed of indigenous trees and uncultivated areas), number of alien snail species, and proportion of forest loss before 1945 in each area were examined using a randomization test and simultaneous autoregressive (SAR) models. Extinctions in each area and on the entire island were detected by comparing 2005,07 records with 1990,91 records and previously published records from surveys in 1987,91 and 1901,07. The association of species extinction with snail ecotype and the above environmental factors was examined using a spatial generalized linear mixed model (GLMM). Results, The level of habitat loss before 1945 explained the greatest proportion of variation in the geographical patterns of species richness. Current species richness was positively correlated with elevation in the arboreal species, whereas it was negatively correlated with elevation in the ground-dwelling species. However, no or a positive correlation was found between elevation and richness of the ground-dwelling species in 1987,91. The change of the association with elevation in the ground-dwelling species was caused by greater recent extinction at higher elevation, possibly as a result of predation by malacophagous flatworms. In contrast, very minor extinction levels have occurred in arboreal species since 1987,91, and their original patterns have remained unaltered, mainly because flatworms do not climb trees. Main conclusions, The species-richness patterns of the land snails on Hahajima Island are mosaics shaped by extinction resulting from habitat loss more than 60 years ago, recent selective extinction, and original faunal patterns. The effects of habitat destruction have remained long after habitat recovery. Different factors have operated during different periods and at different time-scales. These findings suggest that historical processes should be taken into account when considering local-scale diversity patterns. [source]


    S. Nemeth
    Phylogenetic hypotheses for the pantropical marine green algal genus, Caulerpa, were inferred based on analyses of nuclear-encoded rDNA internal transcribed spacer (ITS) sequences. Results of these analyses were used to assess the correspondence between rDNA phylogeny and traditional sectional taxonomy, to identify synapomorphic morphological characters (including assimilator morphology and chloroplast ultrastructure), and to examine marine biogeographic hypotheses for the genus. Ribosomal DNA ITS sequences were aligned for thirty-three species and intraspecific taxa of Caulerpa. Results indicate limited correspondence between phylogeny and sectional taxonomy for the genus, (e.g., the sections Filicoideae and Sedoideae were not monophyletic). In contrast, chloroplast morphology could be mapped to the tree topology with limited homoplasy. Pantropical isolates of the filicoidean species, Caulerpa sertularioides and Caulerpa mexicana each formed monophyletic groups. Caulerpa reyesii was included as a derived taxon within the Caulerpa taxifolia clade, suggesting that these species were conspecific and affirmed the lack of correspondence between phylogeny and assimilator morphology. Isolates and various intraspecific taxa of Caulerpa racemosa did not form a monophyletic group. Instead, these taxa formed a heterogeneous assemblage with other sedoidean and filicoidean taxa. Within the C. sertularioides clade, Caribbean and Atlantic isolates formed a basal paraphyletic group, whereas eastern and western Pacific isolates formed a more derived monophyletic group. Therefore, these results are not consistent with an Indo-West Pacific origin of this species. [source]

    Palaeoceanography of the western Pacific and marginal seas,

    Tadamichi Oba
    No abstract is available for this article. [source]


    William F. Perrin
    Abstract Knowledge of geographic variation is important to questions of population assessment and management. Fraser's dolphins have been exploited in two regions in the western Pacific. Analysis of 137 skulls from the Philippines, Japan, Taiwan, Australia, Indonesia, Malaysia, South Africa, France, the U.S., St. Vincent and the Grenadines, and the eastern tropical Pacific revealed sexual dimorphism in 5 of 26 measurements (difference of 1.9%-5.8% between males and females), similar to levels of cranial dimorphism in other small pelagic delphinids. Males had a larger braincase and temporal fossae and smaller external nares than females. Sexually dimorphic characters were excluded, and male and females samples were pooled to examine geographic differences in the remaining characters. Multivariate analyses yielded significant differences between the Philippine and Japanese series within the North Pacific and between a pooled North Pacific series and a North Atlantic series. The Japanese skulls were on average broader and had a wider rostrum, larger orbit, larger internal nares, and longer braincase than the Philippine skulls. These differences suggest that Fraser's dolphins exploited in Japanese and Philippine waters in directed fisheries or as by catch belong to different populations and should be assessed and managed separately. [source]

    Sebdenia cerebriformis sp. nov. (Sebdeniaceae, Sebdeniales) from the south and western Pacific Ocean

    Antoine D.R. N'Yeurt
    SUMMARY A new species of red alga, Sebdenia cerebriformis N'Yeurt et Payri sp. nov. (Sebdeniaceae, Sebdeniales), is described from various localities in the south and western Pacific including Fiji, New Caledonia, the Solomon Islands, Vanuatu, and Indonesia (Java Sea). The new species is characterized by a ruffled thallus with multiple perennial stipitate holdfasts, large conspicuous inner cortical stellate cells, and a lax filamentous medulla. [source]

    Structure, genesis and scale selection of the tropical quasi-biweekly mode

    Piyali Chatterjee
    Abstract The quasi-biweekly mode (QBM) and the 30,60 day mode are two major intraseasonal oscillations (ISOs) in the tropics. The QBM is known to have a major influence in determining the active and break conditions of the Indian monsoon during the northern summer. A westward-propagating equatorial Rossby wave with quasi-biweekly period influences the Australian monsoon during the northern winter. Universality between the summer and winter QBM is established through analysis of daily circulation and convection data for 10 years. It is shown that the mean spatial structure of the QBM in circulation and convection resembles that of a gravest meridional mode equatorial Rossby wave with wavelength of about 6000 km and westward phase speed of approximately 4.5 m s,1. However, the maximum zonal wind occurs at around 5°N (5°S) during the northern summer (winter). The wave structure appears to be translated northward (southward) by about 5° during the northern summer (winter). The relationship between outgoing long-wave radiation and circulation data indicates that the mode is driven unstable by coupling with moist convection. Similarity in temporal and spatial characteristics of the mode during the two seasons leads us to propose that the same mechanism governs the genesis and scale selection of the mode in both the seasons. An acceptable mechanism for genesis and scale selection of the QBM has been lacking. In the present study, a mechanism for genesis and scale selection of the observed QBM is proposed. A simple 2½-layer model that includes a steady Ekman boundary layer (BL) formulation incorporating effect of entrainment mixing is constructed for the convectively coupled equatorial waves. Without influence of the background mean flow, moist feedback in the presence of frictional BL convergence drives the gravest meridional mode equatorial Rossby wave unstable with observed wavelength and period but with zonal winds symmetric about the equator. Potential temperature perturbation associated with the Rossby wave is in phase with relative vorticity perturbation at low level. The BL drives moisture convergence in phase with the relative vorticity at the top of the BL. Release of latent heat associated with the BL convergence enhances the potential temperature leading to a positive feedback. The mean flow over the Indian Ocean and western Pacific at low levels is such that the zero ambient absolute vorticity or the ,dynamic equator' shifts to around 5°N (5°S) during summer (winter) and results in a shift of the unstable Rossby waves towards the north (south) by about 5°. The resulting structure of the unstable Rossby mode resembles the observed structure of the biweekly mode. It is shown that neither evaporation,wind feedback nor vertical shear of the mean flow is crucial for the existence of the mode. However these processes marginally modify the growth rate and make the structure of the unstable wave more realistic. Copyright © 2004 Royal Meteorological Society [source]

    Propagation mechanisms for the Madden-Julian Oscillation

    Adrian J. Matthews
    Abstract The Madden-Julian Oscillation (MJO) is examined using 20-years of outgoing long-wave radiation and National Centers for Environmental Prediction/National Center for Atmospheric Research re-analysis data. Two mechanisms for the eastward propagation and regeneration of the convective anomalies are suggested. The first is a local mechanism operating over the warm-pool region. At the phase of the MJO with a dipole structure to the convection anomalies, there is enhanced tropical convection over the eastern Indian Ocean and reduced convection over the western Pacific. Over the equatorial western Indian Ocean, the equatorial Rossby wave response to the west of the enhanced convection includes a region of anomalous surface divergence associated with the anomalous surface westerlies and pressure ridge. This lends to suppress ascent in the boundary layer and shuts off the deep convection, eventually leading to a convective anomaly of the opposite sign. Over the Indonesian sector, the equatorial Kelvin wave response to the east of the enhanced convection includes a region of anomalous surface convergence into the anomalous equatorial surface easterlies and pressure trough, which will tend to favour convection in this region. The Indonesian sector is also influenced by an equatorial Rossby wave response (of opposite sign) to the west of die reduced convection over the western Pacific, which also has a region of anomalous surface convergence associated with its anomalous equatorial surface easterlies and pressure trough. Hence, convective anomalies of either sign tend to erode themselves from the west and initiate a convective anomaly of opposite sign via their equatorial Rossby wave response, and expand to the east via their equatorial Kelvin wave response. The second mechanism is global, involving an anomaly completing a circuit of the equator. Enhanced convection over the tropical western Pacific excites a negative mean-sea-level pressure (m.s.l.p.) anomaly which radiates rapidly eastward as a dry equatorial Kelvin wave at approximately 35 m s,1 over the eastern Pacific. It is blocked by the orographic barrier of the Andes and Central America for several days before propagating through the gap at Panama. After rapidly propagating as a dry equatorial Kelvin wave over the Atlantic, the m.s.l.p. anomaly is delayed further by the East African Highlands before it reaches the Indian Ocean and coincides with the development of enhanced convection at the start of the next MJO cycle. [source]

    The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones

    Masaru Inatsu
    Abstract The neighbor enclosed area tracking (NEAT) algorithm is proposed as an alternative method to conventional point-to-point cyclone tracking approaches. NEAT enables us to count the genesis and tracks of individual cyclones as well as the number of merged and separated cyclones. Little difference in cyclone genesis or track climatology in the Northern Hemisphere was found between NEAT and conventional tracking. The NEAT results indicate a high probability of cyclone merger in the western Pacific and western Atlantic. Composite maps and backtracking from merged cyclones reveal the characteristics of merged cyclones. Copyright © 2009 Royal Meteorological Society [source]