Web Structure (web + structure)

Distribution by Scientific Domains

Kinds of Web Structure

  • food web structure


  • Selected Abstracts


    Structure and vertical stratification of plant galler,parasitoid food webs in two tropical forests

    ECOLOGICAL ENTOMOLOGY, Issue 3 2009
    MIGUEL R. PANIAGUA
    Abstract 1.,Networks of feeding interactions among insect herbivores and natural enemies such as parasitoids, describe the structure of these assemblages and may be critically linked to their dynamics and stability. The present paper describes the first quantitative study of parasitoids associated with gall-inducing insect assemblages in the tropics, and the first investigation of vertical stratification in quantitative food web structure. 2.,Galls and associated parasitoids were sampled in the understorey and canopy of Parque Natural Metropolitano in the Pacific forest, and in the understorey of San Lorenzo Protected Area in the Caribbean forest of Panama. Quantitative host,parasitoid food webs were constructed for each assemblage, including 34 gall maker species, 28 host plants, and 57 parasitoid species. 3.,Species richness was higher in the understorey for parasitoids, but higher in the canopy for gall makers. There was an almost complete turnover in gall maker and parasitoid assemblage composition between strata, and the few parasitoid species shared between strata were associated with the same host species. 4.,Most parasitoid species were host specific, and the few polyphagous parasitoid species were restricted to the understorey. 5.,These results suggest that, in contrast to better-studied leaf miner,parasitoid assemblages, the influence of apparent competition mediated by shared parasitoids as a structuring factor is likely to be minimal in the understorey and practically absent in the canopy, increasing the potential for coexistence of parasitoid species. 6.,High parasitoid beta diversity and high host specificity, particularly in the poorly studied canopy, indicate that tropical forests may be even more species rich in hymenopteran parasitoids than previously suspected. [source]


    Structural dynamics and robustness of food webs

    ECOLOGY LETTERS, Issue 7 2010
    Phillip P. A. Staniczenko
    Ecology Letters (2010) 13: 891,899 Abstract Food web structure plays an important role when determining robustness to cascading secondary extinctions. However, existing food web models do not take into account likely changes in trophic interactions (,rewiring') following species loss. We investigated structural dynamics in 12 empirically documented food webs by simulating primary species loss using three realistic removal criteria, and measured robustness in terms of subsequent secondary extinctions. In our model, novel trophic interactions can be established between predators and food items not previously consumed following the loss of competing predator species. By considering the increase in robustness conferred through rewiring, we identify a new category of species , overlap species , which promote robustness as shown by comparing simulations incorporating structural dynamics to those with static topologies. The fraction of overlap species in a food web is highly correlated with this increase in robustness; whereas species richness and connectance are uncorrelated with increased robustness. Our findings underline the importance of compensatory mechanisms that may buffer ecosystems against environmental change, and highlight the likely role of particular species that are expected to facilitate this buffering. [source]


    A landscape theory for food web architecture

    ECOLOGY LETTERS, Issue 8 2008
    Neil Rooney
    Abstract Ecologists have long searched for structures and processes that impart stability in nature. In particular, food web ecology has held promise in tackling this issue. Empirical patterns in food webs have consistently shown that the distributions of species and interactions in nature are more likely to be stable than randomly constructed systems with the same number of species and interactions. Food web ecology still faces two fundamental challenges, however. First, the quantity and quality of food web data required to document both the species richness and the interaction strengths among all species within food webs is largely prohibitive. Second, where food webs have been well documented, spatial and temporal variation in food web structure has been ignored. Conversely, research that has addressed spatial and temporal variation in ecosystems has generally ignored the full complexity of food web architecture. Here, we incorporate empirical patterns, largely from macroecology and behavioural ecology, into a spatially implicit food web structure to construct a simple landscape theory of food web architecture. Such an approach both captures important architectural features of food webs and allows for an exploration of food web structure across a range of spatial scales. Finally, we demonstrated that food webs are hierarchically organized along the spatial and temporal niche axes of species and their utilization of food resources in ways that stabilize ecosystems. [source]


    Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs?

    ECOLOGY LETTERS, Issue 7 2005
    T. Frede Thingstad
    Abstract Coexistence of two organisms competing for the same nutrient is possible if one is an ,uptake', and the other a ,predation defence' specialist. In pelagic food webs this principle has been linked to cell size. Small osmotroph cells, with their high surface : volume ratio, have been argued to be uptake specialists, while larger osmotrophs avoiding the intense grazing pressure from small protozoan predators might represent ,predation defence' specialists. This may seem like an obligatory trade-off situation that necessitates a choice of either being small or being large, and thus being potentially dominant in oligotrophic or in eutrophic environments, respectively. However, in a more precise form, the theory for nutrient diffusion states that it is the ,surface : cell requirement of limiting element' ratio, rather than the ,surface : volume' ratio, that is important. The distinction is crucial, since it opens up the possibility of there being life strategies that use a non-limiting element to increase size. Hypothesized to maximize uptake and predator defence simultaneously, such strategies should be particularly successful. We suggest that this strategy is exploited by osmotrophs with different size and physiology, such as heterotrophic bacteria, unicellular cyanobacteria and diatoms. Since the strategy implies a shift in organism stoichiometry, the biogeochemical implications are strong, illustrating the tight relationships between physical micro-scale processes, organism life strategies, biodiversity, food web structure, and biogeochemistry. [source]


    Parasites in the food web: linking amphibian malformations and aquatic eutrophication

    ECOLOGY LETTERS, Issue 7 2004
    Pieter T. J. Johnson
    Abstract Emerging diseases are an ever-growing affliction of both humans and wildlife. By exploring recent increases in amphibian malformations (e.g. extra or missing limbs), we illustrate the importance of food web theory and community ecology for understanding and controlling emerging infections. Evidence points to a native parasite, Ribeiroia ondatrae, as the primary culprit of these malformations, but reasons for the increase have remained conjectural. We suggest that the increase is a consequence of complex changes to aquatic food webs resulting from anthropogenic disturbance. Our results implicate cultural eutrophication as a driver of elevated parasitic infection: (1) eutrophication causes a predator-mediated shift in snail species composition toward Planorbella spp., (2) Planorbella are the exclusive first intermediate hosts of R. ondatrae and (3) Ribeiroia infection is a strong predictor of amphibian malformation levels. Our study illustrates how the effects of anthropogenic disturbance on epidemic disease can be mediated through direct and indirect changes in food web structure. [source]


    Trading off the ability to exploit rich versus poor food quality

    ECOLOGY LETTERS, Issue 5 2002
    Alan J. Tessier
    Abstract Lakes differ in the quality of food for planktonic grazers, but whether grazers adapt to this resource heterogeneity is poorly studied. We test for evidence of specialization to resource environment within a guild of suspension feeding daphniids inhabiting lakes that differ in food web structure. Using bioassays, we demonstrate that food quality for grazers increases from deep to shallow to temporary lakes, which also represents a gradient of increasing predation risk. We compare growth rates and reproductive performance of daphniid taxa specific to each of the three lake types and find they differ greatly in minimum resource requirements, and in sensitivity to the resource gradient. These differences express a trade-off in ability to exploit rich vs. poor resources. Taxa from deep lakes, poor in resources, have low minimal needs, but they do relatively poorly in rich resource environments. We conclude that grazer distribution is consistent with an adaptive match of exploitation ability to resource environments. [source]


    Comparing trophic position of stream fishes using stable isotope and gut contents analyses

    ECOLOGY OF FRESHWATER FISH, Issue 2 2008
    S. M. Rybczynski
    Abstract,,, Stable isotope analysis (SIA) and gut contents analysis (GCA) are commonly used in food web studies, but few studies analyse these data in concert. We used SIA (,15N) and GCA (% composition) to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ordination analysis of gut contents identified two primary trophic groups, omnivores and predators. Significant differences in TPGCA and TPSIA were similar in direction among-species and among-trophic groups; neither method detected seasonal changes in omnivore diets. Within-species TPGCA and TPSIA were similar except for one omnivore. TPGCA was less variable than TPSIA for predators, but variation between methods was similar for omnivores. While both methods were equally robust at discriminating trophic groups of fishes, TPSIA is less laborious to estimate and may facilitate cross-stream comparisons of food web structure and energy flow. [source]


    Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2005
    Katleen van der Gucht
    Abstract The phylogenetic composition of bacterioplankton communities in the water column of four shallow eutrophic lakes was analyzed by partially sequencing cloned 16S rRNA genes and by PCR-DGGE analysis. The four lakes differed in nutrient load and food web structure: two were in a clearwater state and had dense stands of submerged macrophytes, while two others were in a turbid state characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had very high nutrient levels (total phosphorus > 100 ,g/l), while the other lakes were less nutrient rich (total phosphorus < 100,g/l). Cluster analysis, multidimensional scaling and ANOSIM (analysis of similarity) were used to investigate differences among the bacterial community composition in the four lakes. Our results show that each lake has its own distinct bacterioplankton community. The samples of lake Blankaart differed substantially from those of the other lakes; this pattern was consistent throughout the year of study. The bacterioplankton community composition in lake Blankaart seems to be less diverse and less stable than in the other three lakes. Clone library results reveal that Actinobacteria strongly dominated the bacterial community in lake Blankaart. The relative abundance of Betaproteobacteria was low, whereas this group was dominant in the other three lakes. Turbid lakes had a higher representation of Cyanobacteria, while clearwater lakes were characterized by more representatives of the Bacteroidetes. Correlating our DGGE data with environmental parameters, using the BIOENV procedure, suggests that differences are partly related to the equilibrium state of the lake. [source]


    Voracious invader or benign feline?

    FISH AND FISHERIES, Issue 3 2009
    A review of the environmental biology of European catfish Silurus glanis in its native, introduced ranges
    Abstract A popular species for food and sport, the European catfish (Silurus glanis) is well-studied in its native range, but little studied in its introduced range. Silurus glanis is the largest-bodied freshwater fish of Europe and is historically known to take a wide range of food items including human remains. As a result of its piscivorous diet, S. glanis is assumed to be an invasive fish species presenting a risk to native species and ecosystems. To assess the potential risks of S. glanis introductions, published and ,grey' literature on the species' environmental biology (but not aquaculture) was extensively reviewed. Silurus glanis appears well adapted to, and sufficiently robust for, translocation and introduction outside its native range. A nest-guarding species, S. glanis is long-lived, rather sedentary and produces relatively fewer eggs per body mass than many fish species. It appears to establish relatively easily, although more so in warmer (i.e. Mediterranean) than in northern countries (e.g. Belgium, UK). Telemetry data suggest that dispersal is linked to flooding/spates and human translation of the species. Potential impacts in its introduced European range include disease transmission, hybridization (in Greece with native endemic Aristotle's catfish [Silurus aristotelis]), predation on native species and possibly the modification of food web structure in some regions. However, S. glanis has also been reported (France, Spain, Turkmenistan) to prey intensively on other non-native species and in its native Germany to be a poor biomanipulation tool for top-down predation of zooplanktivorous fishes. As such, S. glanis is unlikely to exert trophic pressure on native fishes except in circumstances where other human impacts are already in force. In summary, virtually all aspects of the environmental biology of introduced S. glanis require further study to determine the potential risks of its introduction to novel environments. [source]


    Linking ecological theory with stream restoration

    FRESHWATER BIOLOGY, Issue 4 2007
    P. S. LAKE
    Summary 1. Faced with widespread degradation of riverine ecosystems, stream restoration has greatly increased. Such restoration is rarely planned and executed with inputs from ecological theory. In this paper, we seek to identify principles from ecological theory that have been, or could be, used to guide stream restoration. 2. In attempts to re-establish populations, knowledge of the species' life history, habitat template and spatio-temporal scope is critical. In many cases dispersal will be a critical process in maintaining viable populations at the landscape scale, and special attention should be given to the unique geometry of stream systems 3. One way by which organisms survive natural disturbances is by the use of refugia, many forms of which may have been lost with degradation. Restoring refugia may therefore be critical to survival of target populations, particularly in facilitating resilience to ongoing anthropogenic disturbance regimes. 4. Restoring connectivity, especially longitudinal connectivity, has been a major restoration goal. In restoring lateral connectivity there has been an increasing awareness of the riparian zone as a critical transition zone between streams and their catchments. 5. Increased knowledge of food web structure , bottom-up versus top-down control, trophic cascades and subsidies , are yet to be applied to stream restoration efforts. 6. In restoration, species are drawn from the regional species pool. Having overcome dispersal and environmental constraints (filters), species persistence may be governed by local internal dynamics, which are referred to as assembly rules. 7. While restoration projects often define goals and endpoints, the succession pathways and mechanisms (e.g. facilitation) by which these may be achieved are rarely considered. This occurs in spite of a large of body of general theory on which to draw. 8. Stream restoration has neglected ecosystem processes. The concept that increasing biodiversity increases ecosystem functioning is very relevant to stream restoration. Whether biodiversity affects ecosystem processes, such as decomposition, in streams is equivocal. 9. Considering the spatial scale of restoration projects is critical to success. Success is more likely with large-scale projects, but they will often be infeasible in terms of the available resources and conflicts of interest. Small-scale restoration may remedy specific problems. In general, restoration should occur at the appropriate spatial scale such that restoration is not reversed by the prevailing disturbance regime. 10. The effectiveness and predictability of stream ecosystem restoration will improve with an increased understanding of the processes by which ecosystems develop and are maintained. Ideas from general ecological theory can clearly be better incorporated into stream restoration projects. This will provide a twofold benefit in providing an opportunity both to improve restoration outcomes and to test ecological theory. [source]


    Water temperature determines strength of top-down control in a stream food web

    FRESHWATER BIOLOGY, Issue 8 2005
    DAISUKE KISHI
    Summary 1. We examined effects of water temperature on the community structure of a three trophic level food chain (predatory fish, herbivorous caddisfly larvae and periphyton) in boreal streams. We used laboratory experiments to examine (i) the effects of water temperature on feeding activities of fish and caddisfly larvae and on periphyton productivity, to evaluate the thermal effects on each trophic level (species-level experiment), and (ii) the effects of water temperature on predation pressure of fish on abundance of the lower trophic levels, to evaluate how temperature affects top-down control by fish (community-level experiment). 2. In the species-level experiment, feeding activity of fish was high at 12 C, which coincides with the mean summer temperature in forested streams of Hokkaido, Japan, but was depressed at 3 C, which coincides with the mean winter temperature, and also above 18 C, which coincides with the near maximum summer temperatures. Periphyton productivity increased over the range of water temperatures. 3. In the community-level experiments, a top-down effect of fish on the abundance of caddisfly larvae and periphyton was clear at 12 C. This effect was not observed at 3 and 21 C because of low predation pressure of fish at these temperatures. 4. These experiments revealed that trophic cascading effects may vary with temperature even in the presence of abundant predators. Physiological depression of predators because of thermal stress can alter top-down control and lead to changes in community structure. 5. We suggest that thermal habitat alteration can change food web structure via combinations of direct and indirect trophic interactions. [source]


    Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes

    GLOBAL ECOLOGY, Issue 6 2007
    Julian D. Olden
    ABSTRACT Aim, In light of the current biodiversity crisis, there is a need to identify and protect species at greatest risk of extinction. Ecological theory and global-scale analyses of bird and mammal faunas suggest that small-bodied species are less vulnerable to extinction, yet this hypothesis remains untested for the largest group of vertebrates, fish. Here, we compare body-size distributions of freshwater and marine fishes under different levels of global extinction risk (i.e. listed as vulnerable, endangered or critically endangered according to the IUCN Red List of Threatened Species) from different major sources of threat (habitat loss/degradation, human harvesting, invasive species and pollution). Location, Global, freshwater and marine. Methods, We collated maximum body length data for 22,800 freshwater and marine fishes and compared body-size frequency distributions after controlling for phylogeny. Results, We found that large-bodied marine fishes are under greater threat of global extinction, whereas both small- and large-bodied freshwater species are more likely to be at risk. Our results support the notion that commercial fishing activities disproportionately threaten large-bodied marine and freshwater species, whereas habitat degradation and loss threaten smaller-bodied marine fishes. Main conclusions, Our study provides compelling evidence that global fish extinction risk does not universally scale with body size. Given the central role of body size for trophic position and the functioning of food webs, human activities may have strikingly different effects on community organization and food web structure in freshwater and marine systems. [source]


    Spatio-temporal variation of avian foraging in the rocky intertidal food web

    JOURNAL OF ANIMAL ECOLOGY, Issue 1 2001
    Masakazu Hori
    Abstract 1While birds are top predators in most rocky intertidal communities, the relationship between foraging pattern and variability in food web structure has not been studied. This study examined the spatio-temporal variation of both avian foraging and food web structure at an intertidal rocky shore in northern Japan over a 1-year period. 2Seventeen bird species foraged on the intertidal rocky shore. Crows and gulls were dominant, and their major prey was sea urchins that migrated from the sub-tidal to intertidal habitat. Interspecific interactions (i.e. stealing of food, utilization of food waste by other species) occurred between crows and gulls especially when feeding on sea urchins. The prey of the birds showed spatial and temporal partitioning. 3The number of prey items consumed per day by the dominant birds varied with various factors. Factors strongly affecting the foraging pattern of crows were waves, tides, humans and gulls, and those strongly affecting the foraging pattern of gulls were tides, humans, sea urchins and crows. 4In the rocky intertidal food web, most of the top predators were birds, and most of the birds were omnivores. The birds consumed many more species than did other consumers. Food-resource partitioning caused spatio-temporal compartmentation among subwebs in which the top predators were dominant birds. 5Analysis of food web statistics (i.e. web size, numbers of links, linkage density, chain lengths) revealed that the presence/absence of birds did not change the relationships between web size and the other statistics. The food web statistics depended on web size, and the web size was positively related with time spent emersed and temperature when birds were both present and not present. 6Birds often foraged across habitat boundaries, and the main food resource of top predators was the prey species from the subtidal habitat. Therefore, the spatial scale of the Hiura rocky intertidal food web temporally varied with birds foraging across habitat boundaries. [source]


    Temporal and spatial variability in soil food web structure

    OIKOS, Issue 11 2007
    Matty P. Berg
    Heterogeneity is a prominent feature of most ecosystems. As a result of environmental heterogeneity the distribution of many soil organisms shows a temporal as well as horizontal and vertical spatial patterning. In spite of this, food webs are usually portrayed as static networks with highly aggregated trophic groups over broader scales of time and space. The variability in food web structure and its consequences have seldom been examined. Using data from a Scots pine forest soil in the Netherlands, we explored (1) the temporal and spatial variability of a detrital food web and its components, (2) the effect of taxonomic resolution on the perception of variability over time and across space, and (3) the importance of organic matter quality as an explanatory factor for variability in food web composition. Compositional variability, expressed using the Bray-Curtis similarity index, was measured over 2.5 years using a stratified litterbag design with three organic horizons per litterbag set. Variability in community composition and organic matter degradation increased over time in the litter horizon only. Seasonal variation in community composition was larger than variation between samples from the same season in different years. Horizontal spatial variability in community composition and organic matter degradation was relatively low, with no increase in variability with increasing distance between samples. Vertically, communities and organic matter degradation was more different between the non-adjacent litter and humus horizons than between adjacent layers. These findings imply that soil food webs, at least in temperate forest plantations, are more variable than is currently appreciated in experiments and model studies, and that organic matter turnover might be an important factor explaining variability in community composition. Species composition was more variable than functional group composition, which implies that aggregated food webs will seem less sensitive to local temporal and spatial changes than they in fact are. [source]


    Stability of pitcher-plant microfaunal populations depends on food web structure

    OIKOS, Issue 1 2005
    M. Kurtis Trzcinski
    Enrichment (increasing K) destabilizes simple consumer,resource interactions, but increasing food web complexity in various ways can remove this paradox of enrichment. We varied resources and number of omnivorous predators (mosquitoes) and tested for effects on the stability (persistence and temporal variability) of microfaunal populations living in pitcher plants. Top-down (omnivorous) effects were destabilizing, decreasing the persistence time of a rotifer, Habrotrocha rosa, and perhaps a microflagellate, Bodo sp. Enrichment effects were more complex, in part due to effects of shredding midges on resource availability, and in part due to interactions with predation. The persistence of Bodo increased with resource availability (more bacteria due to shredding by midges; no paradox of enrichment). Increasing resources by adding ants decreased persistence of H. rosa when mosquitoes were rare (paradox of enrichment), but the effect was reversed in leaves with significant colonization by mosquitoes. Thus, in the microfaunal community of pitcher plants, omnivorous predation tends to be destabilizing, and also tends to remove the paradox of enrichment. [source]