Weak Discontinuities (weak + discontinuity)

Distribution by Scientific Domains


Selected Abstracts


Higher-order XFEM for curved strong and weak discontinuities

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2010
Kwok Wah Cheng
Abstract The extended finite element method (XFEM) enables the accurate approximation of solutions with jumps or kinks within elements. Optimal convergence rates have frequently been achieved for linear elements and piecewise planar interfaces. Higher-order convergence for arbitrary curved interfaces relies on two major issues: (i) an accurate quadrature of the Galerkin weak form for the cut elements and (ii) a careful formulation of the enrichment, which should preclude any problems in the blending elements. For (i), we employ a strategy of subdividing the elements into subcells with only one curved side. Reference elements that are higher-order on only one side are then used to map the integration points to the real element. For (ii), we find that enrichments for strong discontinuities are easily extended to higher-order accuracy. In contrast, problems in blending elements may hinder optimal convergence for weak discontinuities. Different formulations are investigated, including the corrected XFEM. Numerical results for several test cases involving strong or weak curved discontinuities are presented. Quadratic and cubic approximations are investigated. Optimal convergence rates are achieved using the standard XFEM for the case of a strong discontinuity. Close-to-optimal convergence rates for the case of a weak discontinuity are achieved using the corrected XFEM. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Smeared crack approach: back to the original track

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2006
M. Cervera
Abstract This paper briefly reviews the formulations used over the last 40 years for the solution of problems involving tensile cracking, with both the discrete and the smeared crack approaches. The paper focuses on the smeared approach, identifying as its main drawbacks the observed mesh-size and mesh-bias spurious dependence when the method is applied ,straightly'. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and the strong discontinuity (discrete cracks) approaches are analysed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure stability of the solution, attaining the necessary convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious mesh-size or mesh-bias dependence, comparing very favourably with those obtained with other fracture and continuum mechanics approaches. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Higher-order XFEM for curved strong and weak discontinuities

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2010
Kwok Wah Cheng
Abstract The extended finite element method (XFEM) enables the accurate approximation of solutions with jumps or kinks within elements. Optimal convergence rates have frequently been achieved for linear elements and piecewise planar interfaces. Higher-order convergence for arbitrary curved interfaces relies on two major issues: (i) an accurate quadrature of the Galerkin weak form for the cut elements and (ii) a careful formulation of the enrichment, which should preclude any problems in the blending elements. For (i), we employ a strategy of subdividing the elements into subcells with only one curved side. Reference elements that are higher-order on only one side are then used to map the integration points to the real element. For (ii), we find that enrichments for strong discontinuities are easily extended to higher-order accuracy. In contrast, problems in blending elements may hinder optimal convergence for weak discontinuities. Different formulations are investigated, including the corrected XFEM. Numerical results for several test cases involving strong or weak curved discontinuities are presented. Quadratic and cubic approximations are investigated. Optimal convergence rates are achieved using the standard XFEM for the case of a strong discontinuity. Close-to-optimal convergence rates for the case of a weak discontinuity are achieved using the corrected XFEM. Copyright © 2009 John Wiley & Sons, Ltd. [source]