Weak Deformation (weak + deformation)

Distribution by Scientific Domains


Selected Abstracts


Metamorphism of the Basement of the Qilian Fold Belt in the Minhe-Ledu Area, Qinghai Province, NW China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2002
TSAI Chinglang
Abstract, The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on metabasitic rocks, but not on migmatitic rocks. The basement experienced metamorphism up to temperature 606,778°C and pressure 4.8,6.1 kbar (0.48,0.61 GPa), equivalent to amphibolite-granulite facies. The peak of the metamorphism is marked by a migmatization which occurred at several localities along the studied route 587-535 Ma ago. The basement also recorded a retrograde metamorphism of greenschist facies, during which biotite, garnet, amphibole, and pyroxene were partly altered to chlorite. [source]


Blending PP with PA6 industrial wastes: Effect of the composition and the compatibilization

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
Mohamed Jaziri
Abstract Blending polypropylene to recycled PA6 industrial wastes at different compositions, with and without compatibilizer PPgMA was produced in a corotating twin screw extruder where, polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Several techniques were used to investigate the morphology, thermal, viscoelastic and tensile properties of these blend. Binary PP/PA6 blends showed the presence of PA6 particles dispersed in the PP continuous phase and exhibited a coarse morphology. Increasing PA6 contents in the blend increased their crystallinity and their size and improved the tensile properties at weak deformation. In addition to compatibilizer PPgMA, the morphology shows lower diameters and a decrease in size of the dispersed PA6 particles. The interfacial adhesion was also improved, as a result of the creation of an interphase that was formed by the interaction between the formed PPgPA6 copolymer in situ and both phases. This interphase induced an improvement in tensile properties. The PPgPA6 copolymer generated by the interphase was identified with DMA analysis thanks to an additional transition in loss modulus curves. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Valorization of poly(butylene terephthalate) wastes by blending with virgin polypropylene: Effect of the composition and the compatibilization

POLYMER ENGINEERING & SCIENCE, Issue 8 2008
Najoua Barhoumi
Blends of recycled poly(butylene terephthalate) (PBT) parts obtained from scrapped cars, and virgin polypropylene (PP), were prepared in a twin-screw extruder at different compositions. Selected compositions were also prepared with the presence of ethylene- co -glycidyl methacrylate copolymer (E-GMA) and ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E-MA-GMA) compatibilizers. The effect of the composition and the type of compatibilizer, as well as the mixing conditions, on the morphology phase, thermal, viscoelastic behavior, and mechanical properties of the blends has been investigated. Blends PP/PBT of various composition exhibit a coarse morphology and a poor adherence between both phases, resulting in the decrease of ductility, whereas at weak deformation, PBT reinforced the tensile properties of PP. Addition of E-GMA and E-MA-GMA to the PP/PBT blend exhibited a significant change in morphology and improved ductility because of interfacial reactions between PBT end chains and epoxy groups of GMA that generate EG- g -PBT copolymer. Moreover, thermal and viscoelastic study indicated that the miscibility of PP and PBT has been improved further and the reactions were identified. The E-MA-GMA results in the best improvement of ductility. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers [source]


Tectonic Framework and Deep Structure of South China and Their Constraint to Oil-Gas Field Distribution

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009
Qingchen WANG
Abstract: South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpan-Garzę Orogenic Belt (SGOB) in the northwest, the Mesozoic-Cenozoic Three-river Orogenic Belt (TOB) in the west, the Youjiang Orogenic Belt (YOB) in the southwest, the Middle Paleozoic Huanan Orogenic Belt (HOB) in the southeast, and the Mesozoic-Cenozoic Maritime Orogenic Belt (MOB) along the coast. Seismic tomographic images reveal that the Moho depth is deeper than 40 km and the lithosphere is about 210 km thick beneath the YzC. The SGOB is characterized by thick crust (>40 km) and thin lithosphere (<150 km). The HOB, YOB and MOB have a thin crust (<40 km) and thin lithosphere (<150 km). Terrestrial heat flow survey revealed a distribution pattern with a low heat flow region in the eastern YzC and western HOB and two high heat flow regions in the TOB and MOB respectively. Such a "high-low-high" heat flow distribution pattern could have resulted from Cenozoic asthenosphere upwelling. All oil-gas fields are concentrated in the central part of the YzC. Remnant oil pools have been discovered along the southern margin of the YzC and its adjacent orogenic belts. From a viewpoint of geological and geophysical structure, regions in South China with thick lithosphere and low heat flow value, as well as weak deformation, might be the ideal region for further petroleum exploration. [source]